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Abstract
Decision lists are one of the most easily explainable machine
learning models. Given the renewed emphasis on explainable
machine learning decisions, this machine learning model is
increasingly attractive, combining small size and clear ex-
plainability. In this paper, we show for the first time how to
construct optimal “perfect” decision lists which are perfectly
accurate on the training data, and minimal in size, making
use of modern SAT solving technology. We also give a new
method for determining optimal sparse decision lists, which
trade off size and accuracy. We contrast the size and test accu-
racy of optimal decisions lists versus optimal decision sets, as
well as other state-of-the-art methods for determining optimal
decision lists. We also examine the size of average explana-
tions generated by decision sets and decision lists.

1 Introduction
With the increasing use of Machine Learning (ML) mod-

els to automate decisions, there has been an upsurge in inter-
est in explainable artificial intelligence (XAI) where these
models can explain, in a manner understandable by humans,
why they made a decision. This in turn has led to a re-
examination of machine learning models that are implicitly
easy to explain.

Arguably the most explainable forms of ML models are
decision trees, decision lists and decision sets, since these
encode simple logical rules. Of these, decision sets provide
the simplest explanation, since if a rule “fires” for a given
data instance, then this rule is the only explanation required.
To explain decision lists, i.e. ordered sets of decision rules,
we additionally need to take the order of rules into account.

In order to make explanations easy for humans to under-
stand they should be as small as possible. There has been
considerable investigation into producing the smallest pos-
sible optimal perfect decision trees (Narodytska et al. 2018;
Verhaeghe et al. 2019), where the decision tree agrees per-
fectly with the training data, as well as producing the small-
est possible sparse decision trees (Hu, Rudin, and Seltzer
2019; Aglin, Nijssen, and Schaus 2020), where there is a
trade-off between size of the decision tree versus its accu-
racy on the training data. Similarly there has been investi-
gation of smallest possible optimal decision sets (Ignatiev
et al. 2018), as well as recent work on optimal sparse deci-
sion sets (Yu et al. 2020). This body of work provides com-

pelling evidence that optimal sparse machine learning mod-
els generalize very well, providing high testing accuracy.

Recent work on optimizing decision lists (Angelino et al.
2017; Rudin and Ertekin 2018; Angelino et al. 2018) relies
on a two-phase approach. First, decision rules are mined
using some association rule mining technique (Agrawal,
Imieliński, and Swami 1993), then an optimal order of the
rules is found via search. In contrast, the method proposed in
this paper directly generates all the rules of the optimal deci-
sion list as part of the search. This means it can generate de-
cision rules which are meaningful in the context of their po-
sition in the target decision list, but could by themselves not
provide valuable information on the training data, and there-
fore would not have been mined by the approach of (An-
gelino et al. 2017; Rudin and Ertekin 2018; Angelino et al.
2018). The two step process can also generate many candi-
date rules to order when the number of features is large. Fi-
nally, this earlier approach does not optimize rules in terms
of reducing the number of literals, which may result in larger
decision list models.

The previous methods focus on sparse decision lists, that
trade size of the decision list for accuracy on the training
data. In contrast, we can also find optimal perfect decision
lists, which agree completely with the training data.

In summary the contributions of this paper are:
• The first method to determine optimal perfect decision

lists, that agree with all the training data.

• An approach to optimal sparse decision lists that gener-
ates more accurate decision lists than previous methods.

• We introduce the notion of explanation size which, for a
particular example, determines how much information is
required to explain the classification given by a machine
learning model. We compare explanation size for decision
lists and decision sets.

2 Preliminaries
(Maximum) Satisfiability. The input of a Boolean sat-
isfiability problem (SAT) (Biere et al. 2009) consists of a
formula over a set of propositional variables using various
logic operators on these variables. Solving a SAT consists
in determining whether there exists an assignment of True
or False value to each variable, called a truth assignment,
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such that the entire formula is satisfied, i.e. True. Otherwise,
the formula is unsatisfiable. In the more specific conjunctive
normal form (CNF) form, the formula is a conjunction of
clauses, and each clause is a disjunction of literals. A literal
is a variable or its negation. Hence, a CNF formula can be
satisfied if and only if at least one literal per clause can be
set to True.

In the context of unsatisfiable formulas, the maximum
satisfiability (MaxSAT) problem consists in finding a truth
assignment that maximizes the number of satisfied clauses.
In the Partial Weighted MaxSAT variant (Biere et al. 2009,
Chapter 19), each clause c is either soft and has a weight
wc, or it is hard. An optimal solution then consists in a truth
assignment that satisfies all hard clauses and maximizes the
sum of the weights of the satisfied soft clauses.
Classification Problems We consider a classification
problem with a set of featuresF = {f1, . . . , fK} and a label
C, all binary (or binarized using standard techniques (Pe-
dregosa et al. 2011)). The training set is denoted E =
{e1, . . . , eM}. Each instance ei ∈ E is a pair (ci, πi) ∈
C × 2F . Given E , the classification problem consists in find-
ing a function φ̂ : 2F → C which minimizes the classifica-
tion error on testing data.
Rules, Decision Sets and Decision Lists. We can natu-
rally represent a binary feature f ∈ F as a Boolean vari-
able, and its two possible values as a literal or its negation,
denoted f and ¬f . A rule has the form IF “instance satisfies
formula” THEN “predict c”, where the formula is a conjunc-
tion on a subset of the feature literals.

A Decision Set is an unordered set of rules. A decision set
misclassifies an instance if no rule matches the instance, or
if at least two rules predict different classes.

A Decision List is an ordered set of rules. The first rule
of a decision list that matches an instance is the one that
classifies the instance. Decision list are often written as a
single cascade of IF-THEN-ELSEs, with the last rule often
a “catch-all”, or default rule, which matches all (remaining)
instances to some class.
Example 1 Consider the following set of 8 items (shown as
columns):

Item No. 1 2 3 4 5 6 7 8

Fe
at

ur
es

A 1 1 0 0 0 0 0 0
B 0 1 1 1 0 0 0 0
C 1 0 0 1 1 1 0 0
D 0 1 1 0 0 1 1 1
E 0 1 0 1 1 0 0 1

Class H 1 1 0 0 1 1 0 0

A valid and optimal decision set for this data is

if A then H
if ¬B ∧ C then H
if ¬A ∧ ¬C then ¬H
if ¬A ∧B then ¬H

The size of this decision set is 11 (one for each literal on
the left hand and right hand side, or alternatively, one for
each literal on the left hand side and one for each rule). Note

how rules can overlap: both the first and second rule classify
item 1.

A valid and optimal decision list for the data above is

if A then H
else if B then ¬H
else if C then H
else if true then ¬H

The size of the decision list is 7, and there is no overlap of
rules by definition: item 1 is classified by the first rule and
not the second. Note how the last rule is a default rule.

3 Related Work
Decision lists were introduced by Rivest (1987) and

heuristic methods for decision lists also date back to the late
80s (Clark and Niblett 1989; Clark and Boswell 1991).

One recent approach (Rudin and Ertekin 2018) provides
DLs that have some optimality guarantee. Given a fixed set
of decision rules, it chooses a minimum-size ordered sub-
set of these rules; the order essentially terminates when a
default rule is chosen. The authors model the problems as
an integer program (IP) and solve it with a mixed integer
programming (MIP) solver. The objective is a combination
of training accuracy and sparsity, minimizing misclassifica-
tions where every rule used incurs a “cost” of C misclassi-
fications, and every literal used costs C1 misclassifications.
The method is slow, and somewhat restricted by the time re-
quired to generate all potential possible rules as input. They
consider data sets with up to 3000 examples and 60 features,
but cannot prove optimality of their solutions on the data
tested. One advantage of the approach is that it is easy to
customize, for example, favoring the use of certain features,
or extending to cost-sensitive learning.

To the best of our knowledge, the first method to gen-
erate optimal decision lists extends the approach of (Rudin
and Ertekin 2018) using the same idea of ordering a fixed
set of decision rules, but using a bespoke branch-and-bound
algorithm (Angelino et al. 2018). The method makes use
of bounding methods and symmetry elimination techniques.
They minimize regularized misclassification, where each
rule costs λM misclassification errors where M is the num-
ber of training examples. The approach relies on the sparsi-
fication parameter λ to limit the set of rules it needs to con-
sider. It can find and prove optimal solutions to large prob-
lems (hundreds of thousands of examples), the main limita-
tion is on the number of features, since the number of pos-
sible decision rules grows exponentially in the number of
features. The data sets they consider have up to 28 (binary)
features, and at most 189 decision rules are considered.

4 Encoding
Recent work of (Yu et al. 2020) gives a SAT encoding for

describing decision sets. We can modify this fairly naturally
to instead define decision lists.



MaxSAT Model for Perfect Decision Lists
The (Yu et al. 2020) MaxSAT model determines whether

there exists a perfect decision set of at most a given size N .
All rules are encoded as a single sequence of feature literals,
and a class literal ends each rule. The model also keeps track
of which items are valid (i.e. agree) with previous literals in
the rule. We can modify this to determine a perfect decision
list of size at most N by keeping track of which items have
previously been classified by a previous rule, and preventing
them from being considered (in)valid in later rules. Note that
for binary classification problems we consider that there is
one class pseudo-feature C = {c} and items have this feature
or not. For 3 or more classes, we assume a one-hot encod-
ing (Pedregosa et al. 2011), with each item having exactly
one feature from C.

The sequence of literals is viewed as a path graph, with
one feature literal per node. The encoding uses a number of
Boolean variables described below:
• sjr: node j is a literal on feature fr ∈ F ∪ C;

• tj : truth value of the literal for node j;

• vij : example ei ∈ E is valid at node j;

• nij : example ei ∈ E is not previously classified by any
nodes before j

• uj : node j is unused
The model is as follows:

• A node either decides a feature or is unused:

∀j∈[N ] uj +
∑

r∈[K+|C|]

sjr = 1 (1)

• If a node j is unused then so are all the following nodes:

∀j∈[N−1] uj → uj+1 (2)

• The last used node is a leaf:

∀j∈[N−1] uj+1 → uj ∨
∨
c∈C

sjc (3)

uN ∨
∨
c∈C

sNc (4)

• All examples are not previously classified at the first node:

∀i∈[M ] ni1 (5)

• An example ei is previously unclassified at node j + 1 iff
it was previously unclassified, and either j is not a leaf
node or it was invalid at the previous leaf node (so not
classified by the rule that finished there):

∀i∈[M ]∀j∈[N−1] nij+1 ↔ nij ∧ ((
∧
c∈C
¬sjc)∨¬vij) (6)

• All examples are valid at the first node:

∀i∈[M ] vi1 (7)

• An example ei is valid at node j + 1 iff j is a leaf node
and it was previously unclassified, or ei is valid at node

j and ei and node j agree on the value of the feature sjr
selected for that node:

∀i∈[M ]∀j∈[N−1]

vij+1 ↔ (((
∨
c∈C sjc) ∧ nij+1) ∨

(vij ∧
∨
r∈[K] (sjr ∧ (tj = πi[r]))))

(8)
• If example ei is valid at a leaf node j, it should agree on

the class feature:
∀i∈[M ]∀j∈[N ] (sjc ∧ vij)→ (tj = ci) C = {c}

∀i∈[M ]∀j∈[N ]∀c∈C (sjc ∧ vij)→ ci |C| ≥ 3
(9)

• When there are 3 or more classes we restrict leaf nodes to
only consider true examples of the class:

∀j∈[N ]∀c∈C sjc → tj |C| ≥ 3 (10)
• For every example there should be at least one leaf node

where it is valid:
∀i∈[M ]

∨
j∈[N ]

((
∨
c∈C

sjc) ∧ vij) (11)

The constraints (1)–(11) make up the hard constraints of the
MaxSAT model. As for the optimization criterion, we maxi-
mize

∑
j∈[N ] uj , which can be trivially represented as a list

of unit soft clauses of the form (uj , 1).
The differences between the above model and the model

of (Yu et al. 2020) is the addition of the nij variables to track
which items have been previously classified, and their use in
constraint (8), as well as the rules to compute them given in
constraints (5) and (6).

The model shown above represents a non-clausal Boolean
formula, which can be clausified with the use of auxiliary
variables (Tseitin 1968). Also note that any of the known
cardinality encodings that can be used to represent the sum
in (1) (Biere et al. 2009, Chapter 2) (also see (Ası́n et al.
2009; Bailleux and Boufkhad 2003; Batcher 1968; Sinz
2005)). Finally, the size (in terms of the number of literals)
of the proposed SAT encoding is O(N ×M × K), which
results from constraints (6) and (8).
Example 2 Consider a solution for 7 nodes for the data of
Example 1. The representation of the decision list is shown
below:

1 2 3 4 5 6 7

A // H // B // ¬H // C // H // ¬H
The interesting (true) decisions for each node are as follows:

Node j 1 2 3 4 5 6 7

sjr s1A s2H s3B s4H s5V s6H s7H

tj 1 1 1 0 1 1 0

vij v11 v12 v33 v34 v55 v56 v77

... v22

... v44

... v66 v87

v81 v83 v85

nij n11 n12 n33 n34 n55 n56 n77

...
...

...
...

...
... n87

n81 n82 n83 n84 n85 n86



Note how at the end of each rule, the selected variable is the
class H . Note that at the start and after each leaf node all
previously unclassified examples are valid, and each feature
literal reduces the valid set for the next node. In each leaf
node j the valid examples are of the correct class determined
by the truth value tj of that node.

The MaxSAT model tries to find a decision set of size at
mostN . If this fails, we can increaseN by some amount and
resolve, until either resource limits (typically computation
time) are reached or a solution is found.

MaxSAT Model for Sparse Decision Lists
We can extend the MaxSAT model to look for sparse de-

cisions lists that are accurate for most of the instances, rather
than perfect. We minimize the number of misclassifications
(including non-classifications, where no decision rule in the
list gives information about the item) plus the size of the de-
cision list in terms of nodes multiplied by a discount factor
Λ which records that Λ fewer misclassifications are worth
the addition of one node to the decision list. Typically we
define Λ = dλMe, where λ is the regularized cost of nodes
in terms of misclassifications.

We introduce variable mi to represent that example i ∈
[M ] is misclassified. The model is as follows:
• If example ei is valid at a leaf node j then they agree on

the class feature or the item is misclassified:
∀i∈[M ]∀j∈[N ] (sjc ∧ vij)→ (tj = ci ∨mi) C = {c}

∀i∈[M ]∀j∈[N ]∀c∈C (sjc ∧ vij)→ (ci ∨mi) |C| ≥ 3
(12)

• For every example there should be at least one leaf literal
where it is valid or the item is misclassified (actually non-
classified):

∀i∈[M ] mi ∨
∨
j∈[N ]

(
∨
c∈C

sjc ∧ vij) (13)

together with all the hard constraints of the model for perfect
decision lists except constraints (9) and (11). The objective
function is ∑

i∈[M ]

mi +
∑
j∈[N ]

Λ(1− uj) +NΛ

represented as soft clauses (¬mi, 1), i ∈ [M ], and (uj ,Λ),
j ∈ [N ].

5 Separated Models
A convenient feature of minimal decision sets is the fol-

lowing: the union of minimal decision sets for each c ∈ C
that correctly classifies all instances of class c and do not
misclassify any instances not of class c as class c, is a mini-
mal decision set for the entire problem.

That means we can compute perfect decision sets for |C|
classes by separately computing |C| perfect decision sets,
one for each class. The union of these |C| models, which
we call “separated model”, is clearly not much smaller than
the complete model, as a separated model still covers each

example. The advantage is that computing |C| models of to-
tal size N is much faster than computing a single model of
size N .

For decision lists this property no longer holds. If we com-
pile decision lists separately for each class, we must still or-
der the decision lists of different classes. And it may be that
no optimal decision list can be expressed as rules for one
class, followed by another class, followed by another.
Example 3 Consider the dataset of Example 1. Recall that
an optimal decision list shown in Example 1 has 7 literals.
An optimal decision list that is separated in class order is

if A then H
else if ¬B ∧ C then H
else if B then ¬H
else if true then ¬H

requiring one more literal.
Given that separated models are important for scaling

this approach to larger problems, we need to consider ap-
proaches for defining decision lists in a separated form. We
consider a number of different approaches:
fixed σ Given a permutation σ of classes, find an optimal

decision list for the first class in σ, then make an optimal
decision list for the second class ignoring items already
classified by the decision list for the first class. Then con-
sider the third class, etc.

greedy Make an optimal decision list for each class inde-
pendently: choose the one that is best under some metric.
Fix its solution as the first part of the decision list. Cal-
culate I ′ as the items not classified by this decision list.
Make an optimal decision list for each remaining class
independently. Again, choose the best one and fix it. Con-
tinue until all classes are considered, or I ′ becomes empty.

For the fixed permutation case, one can try all possible per-
mutations, if there are not too many, e.g. |C| ≤ 3, or use a
heuristic to choose a permutation σ. One heuristic we con-
sider is sorting the classes by increasing/decreasing number
of their respective items in the training set. Alternatively, we
consider ordering the classes greedily based on the post-hoc
analysis of the accuracy or cost of individual class repre-
sentations obtained on the training data. Here, training accu-

racy for the representation of class c is 1 −
∑

i∈[M],ci=cmi

|{ei∈E,ci=c}|
while the cost of representation of class c is assumed to be
N −

∑
j∈[N ] uj +

⌈∑
i∈[M]mi

Λ

⌉
.

Note that for separated sparse models, the objective is ef-
fectively different. Using the same objective for each class
separately means that we count a misclassification once for
every class it is detected by. This is arguably more infor-
mative. As we cannot guarantee the same optimal solutions
anyway (due to order restrictions), this seems acceptable.

6 Explanation Size
Given two different ML models, we can ask which model

gives the smallest explanation on a particular data instance.
By optimizing the size of a decision list or decision set, we



believe the size of the explanations it creates will be small,
but this is not completely accurate. The explanation size of
an ML model can be far smaller than the whole model. The
implicit notion of explanation size we are trying to capture
is, if a customer/user were to ask why our model made a
decision for their case, how would we explain that decision?
Note that we also define explanation size for the cases where
a decision set makes no decision, either since no rule fires, or
two contradictory rules fire. We define the explanation size
of a model φ̂ on an example instance e as follows.

If φ̂ is a decision set and the rules in φ̂ that fire on example
e are {if πi then ci}, ∀i ∈ [n], n ≤ N = |φ̂|, then
• if all the classes c1, . . . , cn agree, i.e. ci = c′, ∀i ∈

[n], c′ ∈ C, then the explanation size for example e is∑n
i=1 |if πi then ci|

n , that is, the average of the rules, any of
which could explain the example.

• if not all classes agree for e then the explanation size is the
sum of averages of the rules for all the conflicting classes
predicted for e; wlog. assume that ci = c′, c′ ∈ C, 1 ≤
i ≤ k < n and cj = c′′, c′′ ∈ C, k + 1 ≤ j ≤ n, then

the explanation size for example e is
∑k

i=1 |if πi then ci|
k +∑n

j=k+1 |if πj then cj |
n−k ; similar reasoning can be applied to

situations of more than two conflicting classes.

• if no rule fires then the explanation size is |φ̂|, i.e. we need
the whole decision set to explain why e is not classified.
If φ̂ is a decision list and if πj then cj is the first rule in φ̂

that fires on example e then
• the explanation size is

∑j
i=1 |πi|+1 as we need to explain

why none of the previous rules fired, and why rule j did.

• if no rule fires for e then the explanation size is |φ̂|, i.e. we
need the whole model to explain why e is not classified.
Note that in practice this does not occur since the last rule
will be a default rule, and all examples will be classified.
Note that it is easy to extend the notion of explanation

size to decision trees (as the path from root to leaf) though
decision tree models are not considered in this paper.

7 Experimental Results
This section describes the results of experimental assess-

ment of the proposed approach to perfect and sparse decision
lists and compares it with the state-of-the-art SAT-based de-
cision sets (Ignatiev et al. 2018; Yu et al. 2020) as well as the
only previous approach to optimal sparse decision lists we
are aware of (Angelino et al. 2017; Wang et al. 2017). Exper-
imental results are obtained on the StarExec cluster1 (Stump,
Sutcliffe, and Tinelli 2014), each computing node of which
uses an Intel Xeon E5-2609 2.40GHz CPU with 128GByte
of RAM, running CentOS 7.7. The time limit and memory
limit used per process are 1800 seconds and 16 GB.

For the evaluation, we use the benchmark suite previously
studied in (Yu et al. 2020). Thus, the 71 datasets studied
come from the UCI Machine Learning Repository (UCI) and

1https://www.starexec.org/

Penn Machine learning Benchmarks (PennML). We also use
5-fold cross validation, which results in 355 pairs of training
and test data split with the ratio 80% and 20%, respectively.
Finally, feature domains are quantized into 2, 3, and 4 in-
tervals and then one-hot encoded (Pedregosa et al. 2011).
The number of one-hot encoded features (training instances,
resp.) per dataset in the benchmark suite varies from 3 to
384 (from 14 to 67557, resp.). The total number of bench-
mark datasets is 1065 (71× 5× 3).

Implementation All the models proposed in Section 4,
and Section 5 are implemented as a set of Python scripts
and solving is done by instrumenting calls to exact MaxSAT
solver RC2-B (Ignatiev, Morgado, and Marques-Silva 2018,
2019). The underlying SAT solver is Glucose 3 (Audemard,
Lagniez, and Simon 2013). The complete MaxSAT model
is referred to as pdl∪. As was shown in Section 5, sepa-
rated models do not guarantee optimality of the size of de-
cision list, and so we tested various ordering of the classes
when computing separated decision lists. Concretely, pdli↑
and pdli↓ refer to the separated models that order the classes
by the increasing/decreasing number of training data in the
classes. Sparse models are referred to as sdl[λ]◦, where λ
is a regularized cost and ordering ◦ is from {∪, i ↓, i ↑, a ↓
, a ↑, c ↓, c ↑} meaning that decision list computation is in-
tegrated, or done separately with the classes being ordered
based on the increasing/decreasing number/accuracy/cost of
training data in the classes, as defined in Section 5.

Perfect Models
We compare our prototype against state of the art in per-

fect decision set methods (Ignatiev et al. 2018; Yu et al.
2020), namelymds2,mds?2, and opt. Whilemds2 generates
a decision set with the smallest number of rules and optmin-
imizes the number of literals, mds?2 does rule minimization
followed by literal minimization. The comparison of perfect
models is illustrated in Figure 1.

Performance. The performance of the perfect models is
shown in Figure 1a. As can be seen, mds2 outperforms all
the other rivals and trains 579 models. This should not come
as a surprise since mds2 minimizes the number of rules. It
is followed by mds?2, which sequentially applies rule and
literal minimization – mds?2 can solve 399 benchmarks. The
best performing decision list model pdli↑ comes third with
395 datasets handled successfully. The optimal decision set
approach opt solves 350 instances. Finally, pdli↓ and pdl∪
can train 340 and 283 decision lists, respectively.

Test Accuracy. Test accuracy computed for the bench-
marks solved by all the competitors is shown in the cactus
plot of Figure 1d. Concretely, the plot depicts the value of
test error in percent. On average, all the approaches perform
similarly here and have test accuracy ≈ 80%. This is not
surprising as all of them target perfectly accurate models.

Model Size. The model size calculated as the total number
of literals in the model is shown in Figure 1b. Observe that
optimal perfect decision lists pdl∪ are the smallest among
all the approaches with the average size being 9.1 per model.
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Figure 1: Comparison of perfect models.

The second best model is pdli↑ with 10.4 literals per model.
Note that the smallest size decision sets obtained by opt have
23.3 literals on average. The largest models are ofmds2 with
32.7 literals per model on average. The pairwise comparison
of model size for opt and pdli↑ is detailed in the scatter plot
of Figure 1e, which clearly demonstrates that perfect small-
est size decision sets are usually larger than decision lists
even when these are not guaranteed to be smallest in size.

Average Explanation Size. Although decision lists are
smaller, the advantage of perfect decision sets is clearly the
average explanation size per instance, which is calculated as
described in Section 6. This data is shown in Figure 1c. For
instance, it takes 3.3 literals on average to explain a predic-
tion of decision sets produced by opt. For mds?2 and mds2

the numbers are 3.4 and 5.1, respectively. Explanations for
decision lists are larger; the best result is shown by pdl∪,
which has 7.0 literals per explanation. The best performing
decision list model pdli↑ has 9.3 literals per explanation. The
detailed comparison of the average explanation size for opt
and pdli↑ is shown in the scatter plot of Figure 1f.

Sparse Models
The second part of our evaluation compares sparse mod-

els. Here, the proposed approach is compared against sparse
versions of decision sets sp and mds2 of (Yu et al. 2020)

and optimal sparse decision lists produced by corels (An-
gelino et al. 2017; Wang et al. 2017). Although we tested 3
values for regularized cost λ ∈ {0.005, 0.05, 0.5}, we report
the results only for λ2 = 0.05. As (Yu et al. 2020) showed,
the best trade-off for sparse decision sets was obtained for
λ2 = 0.05 and λ3 = 0.5. However, decision lists obtained
for λ3 are usually too sparse as they end up having a single
rule predicting a constant class. Therefore, hereinafter, the
results are reported for configurations sdl[λ2]∗ as well as for
sp[λ2], mds2[ρ1], mds?2[ρ1], and corels[λ2]. (Note that the
value of regularized cost ρ1 = 0.05 is also taken from (Yu
et al. 2020) unchanged. As mds2 and mds?2 minimize the
number of rules, regularized cost ρ1 is applied wrt. the num-
ber of rules, which contrasts λ2 applied to the number of
literals.) The results are shown in Figure 2.

Performance. As can be observed in Figure 2a, corelsλ2

is the fastest among the approaches for sparse models. It
solves 1016 benchmarks. Sparse decision sets can be trained
by sp[λ2] for 898 datasets while decision lists can be trained
by sdl[λ2]i↑ for 827 of them. Observe that class ordering
i ↑ based on the increasing number of instances per class
outperforms the other configurations of sdl[λ2], which can
tackle ≈ 800 datasets each. The decision set competitors
mds2[λ2] and mds?2[λ2] solve 772 benchmarks. Finally, ag-
gregated computation of smallest decision lists of sdl[λ2]∪
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Figure 2: Comparison of sparse models.

handles 688 datasets.

Test Accuracy. Although corels[λ2] outperforms its ri-
vals in time, the accuracy of its decision lists is not the best.
The scatter plot in Figure 2b depicts the value of test er-
ror e = 100% − a, where a is test accuracy, for corels[λ2]
and sdl[λ2]i↑. Observe that in many cases the accuracy of
sdl[λ2]i↑ is significantly higher than of corels[λ2]: the av-
erage accuracy of corels[λ2] is 40.2% while the average ac-
curacy of sdl[λ2]i↑ is 69.9%. This clearly suggests that the
sparsity measure used in our work enables us to train more
accurate decision lists. Also, as shown in Figure 2c, the ac-
curacy of sdl[λ2]i↑ is on par with the accuracy of sparse de-
cision sets of sp[λ2], which on average equals 67.6%.

Model Size. As detailed in Figure 2d, the smallest mod-
els are obtained with sparse decision lists of corels[λ2] and
sdl[λ2]∗. The average number of literals in the lists pro-
duced by corels[λ2], sdl[λ2]∪, and sdl[λ2]i↑ is 2.7, 2.3, and
2.4, respectively (these numbers are calculated across the in-
stances solved by the corresponding tools). Similar results
are demonstrated by the other configurations of sdl[λ2]∗. In
contrast, the average size of sparse decision sets of sp[λ2],
mds2[λ2], and mds?2[λ2] is 6.9, 22.5, and 17.9, respectively.

Average Explanation Size. Figure 2e and Figure 2f pro-
vide a comparison of sdl[λ2]i↑ against corels[λ2] and sp[λ2]

in terms of the average explanation size. In contrast to the
case of perfect models, an average explanation for decision
lists of sdl[λ2]i↑ has 2.1 literals while explanations of sparse
decision sets of sp[λ2] are of size 3.4. This suggests that
sparse decision lists not only are smaller than sparse deci-
sion sets but they also provide a user with explanations that
are more succinct. The average explanation size of the deci-
sion lists of corels[λ2] is 2.3. (The average numbers shown
here are collected across all benchmarks solved by the cor-
responding tools.)

8 Conclusion
In this paper we develop SAT based methods to construct

optimal perfect decision lists. This is the first method we are
aware of for optimal perfect decision lists. The method is
extended to construct optimal (or near-optimal) sparse de-
cision lists where we trade off accuracy for size. While ex-
isting bespoke methods for optimal sparse decision lists are
considerably more scalable, interestingly the accuracy of the
models they construct are lower, probably because the size
measure we use is more fine grained. We provide the first
comparison of decision sets and lists in terms of model size
and explanation size. For perfect models decision sets are
preferable, but surprisingly this reverses for sparse models.
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