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Abstract11

The rapid rise of Artificial Intelligence (AI) and Machine Learning (ML) has invoked the need for12

explainable AI (XAI). One of the most prominent approaches to XAI is to train rule-based ML models,13

e.g. decision trees, lists and sets, that are deemed interpretable due to their transparent nature.14

Recent years have witnessed a large body of work in the area of constraints- and reasoning-based15

approaches to the inference of interpretable models, in particular decision sets (DSes). Despite being16

shown to outperform heuristic approaches in terms of accuracy, most of them suffer from scalability17

issues and often fail to handle large training data, in which case no solution is offered. Motivated by18

this limitation and the success of gradient boosted trees, we propose a novel anytime approach to19

producing DSes that are both accurate and interpretable. The approach makes use of the concept20

of a generalized formal explanation and builds on the recent advances in formal explainability of21

gradient boosted trees. Experimental results obtained on a wide range of datasets, demonstrate that22

our approach produces DSes that more accurate than those of the state-of-the-art algorithms and23

comparable with them in terms of explanation size.24

2012 ACM Subject Classification Computing methodologies → Machine learning25

Keywords and phrases Decision set; interpretable model; gradient boosted tree; BT compilation26

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2327

Supplementary Material Software (Source Code): https://github.com/jinqiang-yu/cpl/28

Acknowledgements This research was partially funded by the Australian Government through the29

Australian Research Council Industrial Transformation Training Centre in Optimisation Technologies,30

Integrated Methodologies, and Applications (OPTIMA), Project ID IC200100009.31

1 Introduction32

Rapid development of Artificial Intelligence (AI) and Machine Learning (ML) have revolu-33

tionized all aspects of human lives in recent years [30, 1]. However, decisions made by most34

widely used ML models are hard for humans to understand hence the interest in the theory35

and practice of Explainable AI (XAI) rises.36

One major approach to XAI is to compute post-hoc explanations for ML predictions37

to answer a “why” question [34, 44], i.e. why the prediction is made. Although heuristic38

approaches to post-hoc explanations prevail [34, 44, 43], they suffer from a number of39

weaknesses [21, 16, 49, 52]. Formal methods [48, 20, 37] provide alternative approaches40

to explanations that avoid these weaknesses. Another alternative approach to XAI is to41

compute interpretable ML models, i.e. logic-based models, including decision trees [40],42

decision lists [46], and decision sets [29]. These models enable decision makers to obtain43
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succinct explanations from the models directly. In this paper, we focus on the decision44

set (DS) models.45

Decisions sets are particularly easy to explain: the rule that fired is an explanation of46

the decision. This led to an upsurge in interest of decision sets that are both interpretable47

and accurate. Recent work [50] uses propositional satisfiability (SAT) to generate minimum-48

size decision sets that are perfectly accurate on the training data, and demonstrates that49

decision sets that completely agree with the training data outperform others in terms of50

accuracy. A more scalable maximum satisfiability (MaxSAT) approach [18] to this problem51

was then proposed. Unfortunately, both of these methods are unable to provide any decision52

information if a dataset is not completely solved.53

Motivated by these works and their limitations, this paper aims at making a bridge54

between formal post-hoc explainability and interpretable DS models. In particular, the paper55

focuses on developing a novel anytime approach to computing decision sets that are both56

interpretable and accurate, by compiling a gradient boosted tree model into a decision set57

on demand with the use of formal explanations. This is done with the use of the recent58

approach [17] to compute abductive explanations for gradient boosted trees using maximum59

satisfiability (MaxSAT). Furthermore, the paper proposes a range of post-hoc model reduction60

heuristics aiming at enhancing interpretability of the result models, done with MaxSAT61

and integer linear programming (ILP). The experimental results show that compared with62

other state-of-the-art methods, decision sets generated by the proposed approach are more63

accurate, and comparable with the competition in terms of interpretability.64

2 Preliminaries65

SAT and MaxSAT. The standard definitions for propositional satisfiability (SAT) and66

maximum satisfiability (MaxSAT) solving are assumed [3]. A propositional formula φ is67

said to be in conjunctive normal form (CNF) if it is a conjunction of clauses. A clause is68

a disjunction of literals, where a literal is either a Boolean variable b or its negation ¬b.69

A truth assignment µ is a mapping from the set of variables to {0, 1}. A clause is said to70

be satisfied by truth assignment µ if one of the literals in the clause is assigned value 1;71

otherwise, the clause is falsified. If all clauses in formula φ are satisfied by assignment µ, φ is72

satisfied; otherwise, assignment µ falsifies φ. A CNF formula φ is unsatisfiable if there exists73

no assignment satisfying φ.74

In the context of unsatisfiable formulas, the MaxSAT problem consists in finding a truth75

assignment that maximizes the number of satisfied clauses. Hereinafter, we use a variant76

of MaxSAT called Partial Weighted MaxSAT [3, Chapters 23 and 24]. The formula φ in77

this variant is represented as a conjunction of hard clauses H, which must be satisfied, and78

soft clauses S where each of them is associated with a weight representing a preference to79

satisfy them, i.e. φ = H ∧ S. Partial Weighted MaxSAT problems aim at finding a truth80

assignment µ that satisfies all hard clauses and maximizes the total weight of satisfied soft81

clauses.82

Classification Problems. We consider classification problems with a set of classes1 K =83

{1, . . . , k}, and a set of features F = {1, . . . ,m}. The value of each feature i ∈ F is taken84

from its corresponding (numeric) domain Di. As a result, the entire feature space is defined as85

F ,
∏m
i=1 Di. A concrete point represented by v = (v1, . . . , vm) ∈ F, s.t. each vi is a constant86

1 Non-integer class labels can be mapped to a set {1, . . . , |K|}.
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IF “petal.length” < 2.60 THEN class = “setosa”
IF 2.60 ≤ “petal.length” < 4.95 ∧ “petal.width” < 1.75 THEN class = “versicolor”
IF “petal.length” ≥ 2.60 ∧ “petal.width” ≥ 1.75 THEN class = “virginica”
IF “petal.length” ≥ 4.95 THEN class = “virginica”

(a) Decision set
t1 (setosa)

petal.length

0.42604 -0.21885

< 2.60 ≥ 2.60

t2 (versicolor)
petal.length

petal.width-0.21302

0.35085 -0.19565

< 2.60 ≥ 2.60

< 1.75 ≥ 1.75

t3 (virginica)
petal.width

petal.length 0.39408

-0.21845 0.21724

< 1.65 ≥ 1.65

< 4.95 ≥ 4.95

t4 (setosa)

petal.length

0.29324 -0.19609

< 2.60 ≥ 2.60

t5 (versicolor)
petal.length

petal.length-0.18951

0.25718 -0.16426

< 2.60 ≥ 2.60

< 4.95 ≥ 4.95

t6 (virginica)
petal.length

petal.width petal.length

-0.19479 -0.08968 0.05263 0.28251

< 4.75 ≥ 4.75

< 1.45 ≥ 1.45 < 4.95 ≥ 4.95

(b) BT model [5] consisting of 2 trees per class, each of depth ≤ 2, adopted from [17]

Figure 1 Example DS and BT models computed on the well-known Iris classification dataset.

value taken by feature i ∈ F , together with its corresponding class c ∈ K, represented by a87

pair (v, c), indicate a data instance or example. With a slight abuse of notation and whenever88

convenient, a data point v ∈ F is also referred to as an instance. Finally, x = (x1, . . . , xm)89

denotes a vector of feature variables xi ∈ Di, i ∈ F , used for reasoning over points in F.90

A classifier defines a classification function τ : F → K. The objective of classification91

problems is to learn a function τ to generalize well on unseen data given a training dataset E =92

{e1, e2, . . . , en}, where each instance ed ∈ E is a pair of (vd, cd). Classification problems are93

conventionally posed as an optimization problem, i.e. either to minimize the complexity of τ ,94

or maximize its accuracy, or both.95

Rules, Decision Sets and Gradient Boosted Trees. Multiple ways exist to learn classifiers96

given data E . This paper focuses on arguably one of the most interpretable models, i.e.97

decision sets, trained by compiling gradient boosted trees.98

A decision rule is in the form of “IF antecedent THEN prediction”, where the antecedent99

is a set of feature literals. Informally, a rule is said to classify an instance v ∈ F as class100

c ∈ K if its antecedent is compatible with v (or matches v) and its prediction is c. A decision101

set (DS) is an unordered set of decision rules R. An instance (v, c) ∈ E is misclassified by a102

DS if either there exists no rule in R matching v, or there exists a rule classifying v as a103

class c′ ∈ K s.t. c′ 6= c.104

A gradient boosted tree (BT) is a tree ensemble T defining sets of decision trees Tc ∈ T105

for each class c ∈ [|K|], where Tc comprises N ∈ N>0 trees tkz+c, z ∈ {0, . . . , N − 1}, k = |K|.106

Given an instance v ∈ F, its class is obtained by computing the sum of scores assigned by107

trees for each class w(v, c) =
∑
t∈Tc

t(v) and assigning the class which has the maximum108

score, i.e. argmaxc∈[|K]|w(v, c). Whenever convenient, n ∈ t denotes a non-terminal node,109

where t ∈ T represents an arbitrary decision tree. Moreover, each such n indicates a feature110

condition in the form of xi < d, where feature i ∈ F and splitting threshold d ∈ Di.111

I Example 1. Figure 1 shows DS and BT models trained on the Iris dataset, which has
4 numeric features and 3 classes: “setosa”, “versicolor”, and “virginica”. Observe that

CVIT 2016
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Table 1 Several instances extracted from Iris dataset.

# sepal.length sepal.width petal.length petal.width class

e1 5.1 3.5 1.4 0.2 setosa
e2 7.7 2.6 6.9 2.3 virginica
e3 5.6 2.5 3.9 1.1 versicolor
e4 6.2 2.8 4.8 1.8 virginica
e5 5.6 2.8 4.9 2.0 virginica

instance v1 ∈ e1 shown in Table 1 is classified as “setosa” by the first rule of the DS.
In the BT model, each class c ∈ [3] is represented by 2 trees t3z+c, z ∈ {0, 1}. Thus, it
also classifies v1 as “setosa”, since the score of this class w(v1, 1) = t1 + t4 = 0.71928
is higher than the score of “versicolor” w(v1, 2) = t2 + t5 = −0.40253 and the score of
“virginica” w(v1, 3) = t3 + t6 = −0.41324. ut

Interpretability and Explanations. Interpretability is not formally defined as it is considered112

to be a subjective concept [33]. In this paper interpretability is defined as the overall113

succinctness of the information offered by an ML model to justify a provided prediction.114

Moreover, following earlier work [48, 20], we equate explanations for ML models with abductive115

explanations (AXps), which are subset-minimal sets of features sufficient to explain a given116

prediction. Concretely, given an instance v ∈ F and a prediction c = τ(v) ∈ K, an AXp is a117

subset-minimal set of features X ⊆ F such that118

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→ (τ(x) = c) (1)119

I Example 2. Consider the setup of Example 1. Given instance v1, observe that for any
instance with “petal.length” = 1.4, the BT is guaranteed to predict “setosa” independently of
the values of other features, since the weights for “setosa” and “versicolor” are 0.71928 and
−0.40253 respectively as before, and the maximal weight for “virginica” is 0.39408−0.08968 =
0.30440. Thus, the (only) AXp X for the prediction for e1 made by the BT model is
{“petal.length”}. ut

Explanations in BTs. Formal reasoning has been recently applied to computing AXps for120

BT models, with the key difficulty being how to effectively reason about the aggregation121

over a large number of trees in a BT model. Recent work applied satisfiability modulo122

theory (SMT) [21] or mixed integer linear programming (MILP) solvers [42, 27] to directly123

address the linear summations arising in the BT encoding. Hereinafter, we build on the124

recent MaxSAT approach [17], which maps the aggregation reasoning to a set of MaxSAT125

queries to avoid a costly encoding of the linear constraints into CNF. Also, [17] demonstrates126

how a MaxSAT query can be made such that (1) holds if and only if the optimal value of127

the constructed objective function is negative.2 In general, assuming that each feature i ∈ F128

is numeric (continuous), the approach orders the set of splitting thresholds {di1, ..., dihi
}129

in a BT T for each feature i, where hi is the total number of thresholds of feature i in T130

and dij ∈ Di for j ∈ [hi]. Given an instance v = (v1, . . . , vm) ∈ F, the above approach131

associates each value vi with a single interval I ′i from the set of disjoint intervals Di = {132

Ii1 ≡ [min(Di), di1), Ii2 ≡ [di1, di2), . . . , Iihi+1 ≡ [dihi ,max(Di)] }. Thus, AXp extraction133

2 The reader is referred to [17] for the details.
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boils down to finding a subset-minimal subset X ∈ F s.t.134

∀(x ∈ F).
[∧

i∈X
xi ∈ I ′i

]
→ (τ(x) = c) (2)135

I Example 3. Recall Example 2 and assume “petal.length” and “petal.width” have indices 3
and 4. Note that the sets of splitting thresholds for feature “petal.length” {d31 = 2.60, d32 =
4.75, d33 = 4.95} and for feature “petal.width” {d41 = 1.45, d42 = 1.65, d43 = 1.75}. Let
min(D3) = −∞ and min(D4) = 0.1. Then we can associate the values of features 3 and
4 in our instance v1 ∈ e1 with intervals I31 ≡ (−∞, 2.60) and I41 ≡ [0.1, 1.45). Hence
by (2), the AXp shown in Example 2 can in fact be seen as a rule 〈IF “petal.length” <
2.60 THEN class = “setosa” 〉. ut

3 Related Work136

Interpretable decision sets are logic-based ML models that can be traced back to the 70s and137

80s [39, 15, 4, 45]. To the best of our knowledge, [6] proposed the first approach to decision138

sets, which were introduced as the variant of decision lists [45, 7]. The first method making139

use of logic and optimization to synthesize a disjunction of rules that match a given dataset140

was proposed in [26]. Recent work [29] argued that decision sets are more interpretable than141

the other logic-based models, i.e. decision lists and decision trees. This work uses smooth142

local search to generate a set of rules first and heuristically minimizes a linear combination143

of criteria afterwards, e.g. the size of a rule, their maximum number, overlap or error.144

Since then a number of works proposed the use of logic reasoning and optimization145

procedures to train DS models [22, 36, 12, 50, 18] claiming to significantly outperform the146

approach of [29] in terms of accuracy and performance. Among those, the works closest147

to ours are [22, 50, 18]. They proposed SAT-based approaches to computing smallest-size148

decision sets that perfectly agree with the training data by minimizing either the number149

of rules [22, 18] or the number of literals [50, 18] used in the model. Additionally, [50] is150

capable of computing sparse decisions sets that trade off training accuracy for model size.151

Despite the dramatic performance increase achieved in [18], all the approaches above suffer152

from scalability issues.153

Post-hoc explainability is one of the major approaches to XAI. Besides a plethora of154

heuristic sampling-based methods to post-hoc explainability [43, 34, 44], a formal reasoning155

based approach to computing abductive explanations [48, 20] stands out. AXps can be156

related with prime implicants of the decision function (hence an alternative name prime157

implicant explanations, PI-explanations) associated with ML predictions and are guaranteed158

to capture the semantics of the ML models in the entire feature space. Although hard to159

compute in general, AXps were shown to be effectively computable for BT models by an160

incremental MaxSAT-based approach [17].161

Our work aims at making a bridge between interpretable DS models and AXp computation162

by exploiting the latter for training the former. Given a BT model, it focuses on generating163

decision rules that agree with the BT. Each rule represents an AXp for the prediction made164

by the BT model, resulting in a DS model in a way guided by the original BT model. The165

approach is shown to outperform the prior logic-based approaches to DS inference in terms166

of test accuracy and performance. Note that despite prior attempts to train sparse models167

guided by tree ensembles [38], to our best knowledge, none of the existing works have applied168

formal post-hoc explanations to compile interpretable models.169

Finally, our approach can be related to the existing line of work on knowledge distilla-170

tion [11, 13], where an interpretable model is trained to approximate a hard-to-interpret171

CVIT 2016
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black-box model, which is often seen as teacher-to-student knowledge transfer. Note that in172

contrast to knowledge distillation, our approach is able to compile a BT into an equivalent173

DS if we consider the entire feature space, as shown below.174

4 Decision Sets by Boosted Tree Compilation175

Based on [17], this section details a MaxSAT-based approach to compiling a BT into a DS176

where each rule in the DS is equivalent to a prime implicant of the BT classification function.177

4.1 Rule Extraction178

Recall that an AXp, as defined in (1) and (2), can be seen as an if-then rule. Given a179

hard-to-interpret BT model, the AXp extraction approach of [17] can be modified to compute180

an interpretable DS consisting of a set of AXps for the BT. However, when the features181

are continuous (numeric), this potential approach suffers from the following issue. Recall182

that an AXp X ∈ F indicates a set of concrete feature values that are sufficient to explain a183

prediction c = τ(v) for a certain instance v ∈ F. Although this same AXp can explain other184

instances compatible with it, its applicability in general is at the mercy of expressivity of the185

feature literals used in the AXp, i.e. equality literals and succinct interval membership in186

the case of (1) and (2), respectively. Motivated by this limitation, we propose to compute187

AXps over the literals intrinsic to the BT model aiming at getting feature intervals that are188

as general as possible, as detailed below.3189

In contrast to the work of [17], which associates each feature value vi ∈ Di with a single190

narrowest interval I ′i covering the value, we exploit all the splitting points used by the BT191

for feature i and identify all of the corresponding literals satisfied by the feature value vi.192

Note that the original MaxSAT encoding [17] introduces a single Boolean variable oij for193

each literal xi < dij with dij being a j’th threshold used in the BT for feature i, s.t. oij = 1194

iff xi < dij holds true. This way, each positive oij represents an upper bound on the value of195

xi while each negative ¬oij represents a lower bound on xi.196

I Example 4. Feature 3 (“petal.length”) from Example 3 has 3 thresholds: d31 = 2.60,
d32 = 4.75, d33 = 4.95. Boolean variables o31, o32, and o33 are set to true iff x3 < 2.60,
x3 < 4.75, and x3 < 4.95, respectively. Let feature 3 take value 3.9 in the instance we want
to explain. Observe how we can immediately assign literals ¬o31, o32, and o33 to true. ut

Next, given an instance v = (v1, . . . , vm) ∈ F, let us construct a complete conjunction197 ∧
i∈F,j∈[hi] õij of literals õij s.t. õij is to be replaced by oij if vi < dij and replaced by ¬oij198

otherwise. By construction, this conjunction holds true for instance v. Now, given this199

conjunction of literals, we can apply the existing approach of [17] to extract a subset-minimal200

explanation Y ⊆ {õij | i ∈ F , j ∈ [hi]} for instance v over literals õij s.t.201

∀(x ∈ F).
[∧

l∈Y
l
]
→ (τ(x) = c) (3)202

Such an explanation Y may (or may not) define either a lower bound on feature i, an upper203

bound, or both, aiming to construct the most general interval for each feature i ∈ Y. Hence,204

we informally refer to such explanations as generalized AXps or simply rules (hereinafter, we205

use both interchangeably).206

3 An alternative to our approach is inflation of abductive explanations, which is discussed in [23, 24].
Given an AXp, it aims at extending the set of values covered by each feature literal in the AXp while
the AXp condition (1) still holds.
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Algorithm 1 Deletion-based Rule Extraction
Function: RuleExtract(T,v, c, E)
Input: T: BT defining τ(x), v: Instance, c: Prediction, i.e. c = τ(v) E : Training data
Output: Y: Subset-minimal rule
1: 〈H,S〉 ← Encode(T)
2: Y ← Init(T,v)
3: Y ← Sort(Y, E)
4: for l ∈ Y do
5: if EntCheck(〈H,S〉, c,Y \ {l}) then
6: Y ← Y \ {l}
7: return Y

I Example 5. Consider instance v3 predicted as “versicolor” by the BT (observe that
v3 = 3.9 and v4 = 1.1) and recall the thresholds for features 3 and 4 discussed in Example 3.
We can compute a generalized AXp Y = {¬o31, o33, o43} representing the second rule of the
DS shown in Figure 1a. The original approach of [17] would instead compute an AXp defining
the narrowest intervals for features 3 and 4, representing a rule: 〈IF 2.60 ≤ “petal.length” <

4.75∧“petal.width” < 1.45 THEN class = “versicolor”〉, which is far less general than Y . ut

A possible rule extraction procedure is outlined in Algorithm 1. (Please ignore line 3 for207

now; feature sorting is described in Section 4.2). The input BT model T is encoded into208

MaxSAT by applying the approach of [17]. Given an instance v ∈ F, the initial set of literals209

Y = {õij | i ∈ F , j ∈ [hi]} is created. Note that any feature i ∈ F unused in the BT T is210

excluded from Y. The rest of the procedure implements the standard deletion-based AXp211

extraction [20], i.e. it iterates through all literals in Y one by one, and checks which of the212

them can be safely removed such that entailment (3) still holds.213

I Example 6. Consider our running example model and instance v2 ∈ e2 from Table 1
predicted as “virginica” by the BT T. Given the thresholds for features 3 and 4 in Example 3,
set Y is initialized to {¬o31,¬o32,¬o33,¬o41,¬o42,¬o43}. The other two features are excluded
from Y since they are irrelevant to the classification function in T. Applying Algorithm 1
results in extracting a subset-minimal generalized AXp Y = {¬o33}, which represents the
rule 〈IF petal.length ≥ 4.95 THEN class = “virginica”〉. ut

I Remark 7. Algorithm 1 relies on deciding whether formula (3) holds for each feature214

in explanation Y. Here, this is done by means of a series of incremental core-guided215

MaxSAT oracle calls [19, 17]. One may wonder whether or not incomplete anytime MaxSAT216

solving [31, 35, 2, 32] can be applied in this setting. Although this may look plausible at217

first glance, time-restricted anytime MaxSAT algorithms can only over-approximate exact218

MaxSAT solutions while (3) holds if and only if the exact value of the objective function219

is negative. Therefore, an over-approximation of a MaxSAT solution is never able to prove220

the validity of (3) and so none of the features being tested can be discarded in the case of221

incomplete MaxSAT algorithms, which defies the purpose of Algorithm 1.222

4.2 Boosted Tree Compilation223

As mentioned above, generalized AXps can be seen as general decision rules that can be224

applied to an enormous number of instances. Therefore, it makes little sense to extract225

such rules for each instance in the feature space F. Instead, one can devise an on-demand226

CVIT 2016
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Algorithm 2 Compile a BT into a DS
Function: Compile(T, τ, C)
Input: T: BT defining τ(x), τ : Classification function in T, C: Coverage set
Output: R: Set of Rules
1: R ← ∅
2: Cu ← C
3: while Cu 6= ∅ do
4: v← GetInst(Eu)
5: Y ← RuleExtract(T,v, c = τ(v), Eu)
6: Cc ← GetCover(Y, Cu)
7: Cu ← Cu\Cc
8: R ← R∪X ′
9: return R

compilation process, i.e. given a yet uncovered instance v ∈ F, we can apply Algorithm 1 to227

extract a rule covering v (and some other instances). Clearly, exhaustive compilation of a228

BT, i.e. if the target is to cover all the instances in F with generalized AXps of the BT, is229

computationally expensive given that AXp extraction for tree ensembles is hard for DP [25].230

This can also lead to the large size of the resulting DSes making them hard to interpret. In231

practice, local compilation aiming at capturing the behavior of the BT on the training data232

only, is sufficient to generate a DS, which is both accurate and interpretable.233

The proposed approach to compiling a BT T into a DS R is shown in Algorithm 2.234

We initialize the set Cu of currently uncovered instances to be equal to C, i.e. the set of235

examples we wish to cover. The algorithm represents a loop generating rules until the set of236

computed rules R covers all instances in coverage set data Cu, i.e. until there is no uncovered237

instances in C. Each iteration of the algorithm selects an instance v from Cu. Afterwards,238

a generalized AXp Y for the prediction c = τ(v) by the BT T (recall that T is meant to239

compute classification function τ(x)) is extracted by invoking Algorithm 1. The iteration240

proceeds by updating the set of rules R and the set of uncovered instances Cu. The algorithm241

terminates when all the instances in the coverage set C are covered and returns a compiled242

DS R.243

I Proposition 8. Let T be a BT and R be a DS returned by Algorithm 2 for T. Then R ≡ T244

with respect to C.245

We consider two usages of the algorithm: for exhaustive compilation the coverage set C = F246

is all possible feature combinations (in practice we model this coverage set implicitly, rather247

than in its explicit exponential sized form), and for training set compilation where C = E is248

the training set. Based on the properties of prime implicants, Proposition 8 states that as a249

generalized AXp Y ∈ R is a formal explanation for a prediction made by BT T, a compiled250

DS captures the semantics of the original model T on coverage set C, assuming everything251

else is a don’t care. Furthermore, if the process is applied subject to coverage set C = F,252

i.e. when we target the entire feature space F, then R and T behave identically, i.e. they253

compute the same classification function τ(x).254

I Corollary 9. Let Algorithm 2 return a DS R for a BT T. Then there is no instance255

in feature space F covered by two distinct rules Y1,Y2 ∈ R predicting inconsistent classes256

c1 6= c2.257

As each generalized AXp for T represents a prime implicant of the decision function τ(x)258



J. Yu, A. Ignatiev and P. J. Stuckey 23:9

computed over literals õij , the above corollary claims that there are no overlapping rules in259

the result DS R. This contrasts with other modern approaches to DS inference, where rule260

overlap is known to be a problem [29, 22]. Note that this approach still suffers from another261

common issue of DS models: namely, if DS R is computed for the training data E , there262

may still be instances in F uncovered by R.263

I Example 10. Consider the running example BT model shown in Figure 1b. Its compiled
DS representation computed by Algorithm 2 is shown in Figure 1a. Observe that there is
no rule overlap in the DS computed. In fact, as the DS is computed by taking into account
feature space F, it computes the same classification function as the original BT model. ut

Feature Sorting. Intuitively, how general and hence how applicable a rule is depends on264

how frequently the features used in it appear in the training data E labeled with the target265

class. Thus, a simple heuristic to apply when extracting a rule for prediction c = τ(v) is to266

sort the initial state of Y = {õij | i ∈ F , j ∈ [hi]} based on how frequently the corresponding267

literals õij apply in examples E labeled with c. This feature sorting represented by line 3 in268

Algorithm 1 in practice (according to our experiments) results in significantly more general269

rules and so overall smaller DSes.270

Anytime Property. Most widely used reasoning-based algorithms to infer DSes provide271

a solution only if the computation is completed; otherwise, no decision set is reported. In272

contrast to these, the proposed approach is an anytime algorithm, i.e. it can return a valid273

DS R even though the compilation process is interrupted before all the coverage set instances274

C are covered. Furthermore, it can generate a more comprehensive DS R, which covers more275

instances as it keeps going, i.e. after we have covered C ⊆ F we can continue running the276

algorithm for the (unseen) instances of F.277

4.3 Post-Hoc Model Reduction278

The compiled DS R can be large (in terms of either the number of rules or the total number279

of literals) since each generalized AXp Y ∈ R may need a significant number of literals to280

explain a prediction made by BT T, or/and many rules are required to explain all instances281

of C. Once the target DS is obtained, we can apply post-hoc heuristic methods for reducing282

its size and so making it more interpretable. The methods below are in a way inspired by283

the optimization problems studied in [18, 50]. Although these ideas are applicable to any DS284

inference method once the result model is devised, they do not look necessary for standard285

DS inference algorithms as they minimize the model while training. On the contrary, no286

minimization is applied in the rule enumeration process described above and so post-hoc287

model reduction plays a vital role in our approach to reduce the size of final DS models.288

Reducing the Number of Rules. Given a set of rules R, we can compute a minimum289

subset R? ⊆ R that is still equivalent to the BT T wrt. the coverage set C using discrete290

optimization, e.g. integer-linear programming (ILP). Concretely, the approach aims at291

selecting the smallest-size subset R? ⊆ R that covers all instances in C, where R is the292

compiled DS from T. Here, the size of R? is measured as the total number of literals used.293

This can be done by solving the following set cover problem [28]. Namely, for each rule294

Yj ∈ R, we introduce a Boolean variable uj such that uj = 1 iff Yj is included in R?.295

Additionally, a Boolean variable yij is used to indicate that Yj covers ei ∈ C. As a result,296
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the weighted set cover problem for minimizing the total number of literals used is as follows:297

minimize
|R|∑
j=1

(|Yj |+ 1) · uj (4)298

subject to ∀i∈[n]

|R|∑
j=1

yij · uj ≥ 1 (5)299

300

Reducing the Number of Literals. Additionally, one can minimize the total number of301

literals used in the rules of R. Given a rule Y ∈ R, this can be done either lexicographically302

by maximizing rule accuracy followed by size minimization, or by optimizing both, or trading303

off misclassifications for rule size – in either case, a single MaxSAT call per rule to minimize304

can be made. The intution is that if a rule Y misclassifies k instances then its optimized305

version Y? ⊆ Y should not result in many more misclassifications on training data E . Recall306

that a rule misclassifies an instance vk ∈ C if it matches vk but assigns it to a wrong class.307

Inspired by [18], we introduce a Boolean variable pk, which is true iff rule Y covers vk —308

this holds if Y does not use any literals incompatible with vk. If Yvk
= {õij | i ∈ F , j ∈ [hi]}309

are all the literals compatible with vk then this can be modeled with constraints310

∀k∈[|C|]. pk ↔
∧

l∈Y\Yvk

¬l (6)311

Furthermore, let rule Y predict c ∈ K and let C	 ⊆ C contain all instances labeled with any312

other class. Thus, we can apply the objective below when minimizing rule Y:313 ∑
l∈Y

l +
∑

k∈[|C	|]

W · pk (7)314

If W is large enough, say |C|+ 1, this lexicographically minimizes misclassifications and then315

literals. If W is small, e.g. 1/λ·|C|, this trades off λ · |C| misclassifications for one literal.316

5 Experimental Results317

This section compares the proposed approach with the state-of-the-art DS learning algorithms318

on a variety of publicly available datasets in terms of accuracy, scalability, model and319

explanation size. The experiments are performed on an Intel Xeon 8260 CPU running320

Ubuntu 20.04.2 LTS, with the time limit of 3600s and the memory limit of 8GByte. Our321

experiments contain two parts, namely, exhaustive BT compilation and training-set BT322

compilation.323

Prototype implementation. A prototype of the compilation-based approach to generating324

DSes was developed as a set of Python scripts using C = E , hereinafter referred to as cpl.325

The implementation of BT compilation exploits [17] and, therefore, makes use of the RC2326

MaxSAT solver [19].4 The BTs to be compiled are computed by XGBoost [5]; the number327

of trees per class in a BT model is 50 and the maximum depth of each tree is 3. Post-hoc328

literal reduction is done again with RC2 [19]. Let cpl l denote the implementation applying329

4 Real weights in the objective function are not conventionally supported by MaxSAT solvers; the only
other solver to support real weights besides RC2 is LMHS [47].
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lexicographic optimization while cpl lλ1 trades off model accuracy for the number of literals330

used, with λ1 = 0.005. Let cplr denote the implementation with post-hoc rule reduction331

applied using the Gurobi ILP solver [14]. The configuration with both post-hoc lexicographic332

optimization and rule reduction is denoted cpl lr. Finally, the proposed approach applying333

exhaustive compilation C = F is referred to as cplf .334

Competition. Our approach is compared against: twostg a two-stage MaxSAT approach [18]335

for DSes perfectly accurate on the training data; opt another MaxSAT approach [50] for336

perfectly accurate DSes; spλ1 a sparse alternative to opt by the same authors (with λ1 = 0.005)337

optimizing like cpl lλ1 ; imli1 and imli16 using MaxSAT-based IMLI [12] to minimize the338

number of literals given a predefined number of rules (we use 1 or 16); ids a state-of-the-339

art approach [29] based on smooth local search;5 ripper a popular heuristic DS algorithm340

RIPPER [8]; and CN2 (referred to as cn2 ) another heuristic algorithm [7, 6].6341

Datasets. For the evaluation, 59 publicly available datasets from UCI Machine Learning342

Repository [9] and Penn Machine Learning Benchmarks [41] are considered. We apply 5-fold343

cross validation, resulting in 295 pairs of training and test (unseen) data. For the sake of a fair344

comparison, the datasets used are preprocessed so that each original feature i ∈ F is replaced345

with a number of non-intersecting feature intervals xi < dij defined by the XGBoost model346

(see Section 2). This guarantees that all competitors tackle the same problem instances.347

5.1 Exhaustive BT Compilation348

The first experiment compares exhaustive compilation, where C = F is the entire feature349

space. This is impractical except for 6 small benchmarks.350

Results. Here we compare cplf with the competition in terms of accuracy, the total number351

of literals used and explanation size. We present the results as cactus plots showing the352

number of datasets that e.g. reach a certain accuracy, or finish in a certain runtime, for each353

method. These experimental results are shown in Figures 2 and 3 as well as the average354

results across folds are described in Table 2 where only the results of the datasets completely355

solved by compared competitors are presented. Note that cplf is nowhere near as scalable as356

the approaches described in the later experiments, but it is the most accurate approach to357

creating DSes we are aware of.358

Test accuracy. An instance is considered misclassified if either there exists a rule of a359

wrong class that covers it, or it is not covered by any rule of the correct class. Thus, the test360

accuracy in this paper is calculated as n−g
n , where n is the total number of instances in the361

test data and g is the total number of misclassified instances. If an approach fails to train a362

model within the time limit, we assume its accuracy to be 0% for this dataset.363

As can be seen in Figure 2b and Table 2, the best accuracy is achieved by BTs and cplf .364

In fact, these models share the same accuracy (this is also confirmed in Figure 2a), which365

5 Since the original implementation performs poorly [22], here we consider the new implementation of
IDS [10], which is claimed to be orders of magnitude faster than the original implementation.

6 Note that since RIPPER and IMLI compute a single class only given the training data, both of these
competitors are augmented with a default rule predicting a class (1) different from the target class
and (2) represented by the majority of training instances. Other algorithms, including our approach,
incorporate a default rule that assigns a class based on the majority class in the training instances.
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Figure 2 Accuracy of exhaustive compilation. The standard interpretation of cactus plots is
assumed, i.e. a plot sorts the datapoints for each method by the y-axis value, and then shows them
in increasing order independently of other methods. Thus, the order of datasets/folds differs for
different methods. Also, the order of datasets for the same method differs in different subplots.
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Figure 3 Succinctness of exhaustive compilation.

should not come as a surprise given that cplf replicates the behavior of the BT in the entire366

feature space F (see Proposition 8).367

Model Complexity. In general, complexity of a DS model can be measured by the total368

number of literals used in this DS. The total number of literals used in DS models is compared369

in Figure 3a and Table 2. Though the accuracy of DSes trained by cplf outperforms the370

other competitors, these models are significantly larger, which is no surprise given that cplf371

computes many more rules with no post-hoc reduction applied.372

Explanation size. Explanation size is defined as the number of literals required to explain373

an instance.7 This is arguably more important than the model size, since it defines “how374

hard” it is to understand an individual explanation. A small DS model tends to provide375

7 See [51] for details.
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Table 2 Accuracy, number of literals used, and explanation size across folds.

Approach Dataset
cardiotocography hayes-roth iris new-thyroid orbit zoo

Accuracy (%)
bt 100.0 84.38 96.0 96.74 99.66 96.0

cplf 100.0 84.38 96.0 96.74 99.66 96.0
spλ1 100.0 73.44 94.0 91.63 99.43 89.05
opt 100.0 70.63 93.33 91.63 99.54 93.05

twostg 100.0 71.25 92.67 92.09 99.54 91.1
cn2 100.0 62.5 92.67 93.02 99.54 89.1
ripper 45.3 66.25 57.33 80.93 94.11 60.33
ids 27.23 43.75 58.67 76.28 85.29 40.62

imli16 27.23 38.75 25.34 69.77 70.55 43.33
imli1 45.3 39.37 32.67 26.98 8.93 60.33

Number of literals used
cplf 3120.0 76.0 214.0 3614.2 729.8 1422
spλ1 21.0 33.5 9.0 15.4 10.0 23.2
opt 21.0 63.6 19.4 23.0 11.8 30.0

twostg 21.0 64.2 19.8 22.6 11.8 29.8
cn2 21.0 116.2 27.2 36.6 13.2 40.8
ripper 3.0 12.8 5.0 8.2 4.0 3.0
ids 21.0 21.6 19.8 20.0 25.0 14.2

imli16 5.0 2.2 7.4 7.4 6.4 5.0
imli1 3.0 2.2 3.0 4.2 3.0 3.0

Explanation size
cplf 7.26 3.76 3.02 4.9 3.18 5.4
spλ1 2.0 6.31 2.45 4.13 2.86 3.64
opt 2.0 5.41 2.76 4.3 2.94 2.96

twostg 2.0 5.4 2.87 4.23 2.94 3.33
cn2 2.0 6.94 3.02 4.47 3.02 4.05
ripper 2.73 10.15 4.3 4.3 3.15 2.59
ids 16.08 18.23 13.06 7.74 6.23 9.28

imli16 2.0 2.2 2.1 1.97 2.8 2.46
imli1 2.18 2.2 3.0 4.0 3.0 2.2

compact explanations but it is not always accurate. As can be seen in Figure 3b and Table 2376

and similar to the total number of literals used in DSes, cplf requires more literals to explain377

an instance than all competitors except ids.378

A crucial observation to make here is that we test explanation size for each of the test379

instances available. Although test data are meant to extrapolate the overall unseen data,380

such approximation of the unseen feature space is not ideal. As a result, there may be381

numerous instances in F uncovered by all the approaches but cplf , in which case it will382

be the only approach providing a user not only with a prediction but also with a succinct383

explanation of the prediction made.384

5.2 BT Compilation Targeting Training Data385

Compilation to cover the training set C = E is much more efficient, and the main usage we386

expect of our algorithms.387

Scalability. Figure 4a depicts scalability of all selected algorithms on the 295 considered388

datasets. Note that runtime of our approach includes BT training time. The best performance389

is demonstrated by the proposed implementation, i.e. cpl and cpl∗, ∗ ∈ {l, r, lr, lλ1}, where390

all selected datasets are solved within the time limit. This is not surprising since the approach391

is an anytime algorithm that can always return a valid DS. As for other competitors, the392

heuristic method ripper and the MaxSAT approaches imli1 as well as imli16 also solve all393

considered datasets. Next is the heuristic algorithm cn2, where 235 datasets are solved394
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Figure 4 Summary of experimental results when the competitors aim at training a DS given
training data E (i.e. C = E).

within the 3600s time limit. Followed by ids, which solves 166 considered datasets. The395

two-stage MaxSAT approach twostg successfully addresses 130 datasets, while the other396

MaxSAT algorithm for perfect decision sets opt and its sparse alternative spλ1 solve 65 and397

63 datasets respectively.398

Test Accuracy. The accuracy among the selected approaches is shown in Figure 4b. The399

average accuracy among all selected datasets for BTs is 77.34%, beating all DS approaches.400

The highest accuracy among DSes is achieved by all the configurations of the proposed401

approach, i.e. cpl and cpl∗, where the average accuracy ranges from 54.01% (cpl lλ1) to402

57.49% (cpl lr).8 Unsurprisingly, the accuracy in cpl lλ1 is lower than the other configurations403

since cpl lλ1 trades off training accuracy on the number of literals in the computation process.404

Next most accurate are the heuristic methods cn2 (48.03%) followed by ripper (44.81%).405

The average accuracy of imli16 and imli1 is 35.47% and 29.7% respectively, while the average406

accuracy of twostg is 29.6% and ids is 26.78. Finally, the worst accuracy is demonstrated407

by spλ1 and opt (18.84% and 18.27% on average respectively) as these tools fail to provide408

8 Note that most datasets we used represent non-binary classification. Also, DSes are not to be compared
with BTs. As Figure 4b shows (and as our work aims to demonstrate), our approach outperforms the
state-of-the-art DS inference methods in terms of accuracy.
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Figure 5 Comparison of cpllr vs. cn2 and ripper in terms of accuracy and explanation size.
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Figure 6 cpllr vs. imli16 and twostg in terms of accuracy and explanation size.

prediction information for many datasets within the time limit. We will omit further409

discussion of sp and optλ1 since they solve so few datasets.410
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Model Complexity. Figure 4c illustrates the comparison among selected approaches regard-411

ing the total number of literals used in each DS solution. The average number of literals are412

in order: imli1 (2.77), imli16 (8.26), ids (21.14), ripper (38.47), cpl lλ1 (118.47), cpl lr (157.53),413

cpl l (213.27), twostg (265.98), cplr (584.39) cpl (620.82), cn2 (700.49). Clearly, rule reduction414

and literal reduction can significantly reduce the size of the model without significantly415

affecting accuracy. Note how our approaches while significantly larger than the least accurate416

competitors, are significantly smaller than the most accurate competitor cn2.417

Explanation Size. Figure 4d shows the explanation size for each competitor. The aver-418

age explanation sizes are in order: imli1 (2.61), imli16 (3.00), cpl lλ1 (12.14), ids (15.28),419

twostg (17.5), cpl lr (25.34), cpl l (26.18), ripper (29.08), cn2 (81.93), cplr (234.46), cpl (240.88).420

Figure 4d demonstrates that post-hoc literal reduction not only helps decrease the number421

of literals required to explain DS models, but also enables DSes to remain accurate, whereas422

rule reduction does not contribute to smaller explanations. With literal reduction applied423

our approaches are very competitive in terms of explanation size.424

Detailed Comparison. While cactus plots allow us to compare many methods over a large425

suite of benchmarks, they do not allow direct comparison on individual benchmarks. We426

provide a detailed comparison of cpl lr versus other decision set inference approaches in427

Figures 5 and 6, including cn2, ripper, twostg, and imli16.9 The scatter plots depicting428

explanation size are obtained for the datasets solvable by both competitors. Note that cpl lr429

can generate more accurate DSes than the competitors. Also observe that the explanation430

size of DSes computed by cpl lr is smaller than cn2 and comparable with twostg. Although431

the explanation size of DSes in cpl lr is larger than ripper and imli16, the two approaches are432

less interpretable as they compute DSes representing only one class.433

Summary. The experimental results were performed on various datasets, demonstrating434

that our approach computes DSes that outperform the state-of-the-art competitors in terms435

of accuracy and yield comparable explanation size to them.436

6 Conclusions437

This paper introduced a novel anytime approach to generating decision sets by means of438

on-demand extraction of generalized abductive explanations for boosted tree models. It439

can be used for exhaustive compilation of a BT model wrt. the entire feature space, or440

target a set of training instances. Augmented by a number of post-hoc model reduction441

techniques, the approach is shown to compute decision sets that are more accurate than442

decisions sets computed by the state-of-the-art algorithms and comparable with them in443

terms of explanation size.444

As the proposed approach targets generating a decision set by compiling a BT, a natural445

line of future work is to extend the proposed approach to compile BTs into the other446

interpretable models, i.e. decision trees and decision lists, making use of AXp extraction for447

BTs. Additionally, another future work is to apply AXp extraction to compile other accurate448

black box models, e.g. neural networks, into decision sets.449

9 The average results across the folds are given in the appendix.
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Appendices556

A Summaries of Results Across Folds557

0 20 40 60 80
Datasets

0

500

1000

1500

2000

2500

3000

3500

C
P

U
ti

m
e

(s
)

imli16

ripper

imli1
cplr
cpl

cpllr
cpll
cpllλ1

cn2

ids

twostg

spλ1

opt

(a) Runtime

0 20 40 60 80
Datasets

0

20

40

60

80

100

A
cc

u
ra

y
(%

)

bt

cpllr
cplr
cpllλ1

cpll
cpl

cn2

ripper

imli16

imli1
twostg

ids

spλ1

opt

(b) Accuracy

Figure 7 Experimental results of runtime and accuracy across folds.
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(b) Explanation Size

Figure 8 Experimental results of model complexity and explanation size across folds.

Figures 7 and 8 illustrate the average experimental results across folds regarding scalability,558

accuracy, model complexity, and explanation size. Since 5-fold cross validation is used, these559

results for each dataset are obtained from the average of 5 pairs of training and test data.560

Here, observations similar to those described in Section 5 can be made, i.e. the best561

scalability and accuracy among selected DS competitors are both demonstrated by cpl and562

cpl∗, ∗ ∈ {l, r, lr, lλ1} , while imli1 and imli16 show the smallest model complexity and563

explanation size.564
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Figure 9 cpllr vs. CN2 and RIPPER across folds in terms of accuracy and explanation size.
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Figure 10 cpllr vs. imli16 and twostg Across Folds in terms of accuracy and explanation size.
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B Detailed Comparisons Across Folds565

In this appendix, we provide a detailed comparison of cpl lr versus other decision set inference566

approaches across folds.567

Figure 9 and Figure 10 detail the comparisons of cpl lr with CN2, RIPPER, imli16 and568

twostg in terms of average accuracy and explanation size across folds. As can be seen in569

Figure 9a, the accuracy of DSes generated by cpl lr is higher than the accuracy of CN2,570

where the average accuracy is 57.49% and 48.03%, respectively. Additionally, Figure 9b571

demonstrate that the explanation size of DSes produced by CN2 (81.93 on average) can be572

two orders of magnitude larger than the explanation size of cpl lr (25.88 on average).573

Figure 9c illustrate that the average accuracy in RIPPER is 44.81%, which is 12.68%574

lower than the accuracy in cpl lr. Although Figure 9d depict that RIPPER is comparable575

with cpl lr regarding explanation size (29.08 and 25.34 on average respectively), RIPPER is576

less interpretable as it computes DSes representing only one class.577

As can be observed in Figure 10a, the accuracy of twostg (29.67% on average) is 27.82%578

lower than the accuracy in cpl lr while Figure 10b illustrate that the explanation size is579

comparable between the two approaches. Finally, Figure 10c demonstrate that the accuracy580

of imli16 is 22.02% lower than the accuracy of cpl lr on average. However, as can be seen581

in Figure 10d, the explanation size of imli16 is smaller than the explanation size of cpl lr582

but imli16 generates DSes targeting only a single class, which significantly diminishes the583

interpretability of computed DSes.584
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