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Abstract. As machine learning is increasingly used to help make decisions, there
is a demand for these decisions to be explainable. Arguably, the most explainable
machine learning models use decision rules. This paper focuses on decision sets,
a type of model with unordered rules, which explains each prediction with a sin-
gle rule. In order to be easy for humans to understand, these rules must be concise.
Earlier work on generating optimal decision sets first minimizes the number of
rules, and then minimizes the number of literals, but the resulting rules can often
be very large. Here we consider a better measure, namely the total size of the
decision set in terms of literals. So we are not driven to a small set of rules which
require a large number of literals. We provide the first approach to determine
minimum-size decision sets that achieve minimum empirical risk and then in-
vestigate sparse alternatives where we trade accuracy for size. By finding optimal
solutions we show we can build decision set classifiers that are almost as accurate
as the best heuristic methods, but far more concise, and hence more explainable.

1 Introduction

The world has been changed by recent rapid advances in machine learning. Decision
tasks that seemed well beyond the capabilities of artificial intelligence have now become
commonly solved using machine learning [32, 35, 41]. But this has come at some cost.
Most machine learning algorithms are opaque, unable to explain why decisions were
made. Worse, they can be biased by their training data, and behave poorly when exposed
to data outside that which they were trained on. Hence the rising interest in explainable
artificial intelligence (XAI) [4, 14, 16, 18, 22, 23, 26, 29, 30, 36–38, 42, 43, 48, 49, 52],
including research programs [3, 24] and legislation [17, 21].

In this paper we will focus on classification problems, where the input is a set of
instances with features and, as a label, a class to predict. For these problems, some of
the most explainable forms of machine learning formalism are decisions sets [11, 12,
15, 20, 31, 34, 39]. A decision set is a set of decision rules, each with conditions C and
decision X , such that if an instance satisfies C, then its class is predicted to be X . An
advantage of decision sets over the more popular decision trees and decision lists is that
each rule may be understood independently, making this formalism one of the easiest
to explain. Indeed, in order to explain a particular decision on instance D, we can just
refer to a single decision rule C ⇒ X s.t. D satisfies C.

For decision sets to be clear and explainable to a human, individual rules should be
concise. Previous work has examined building decision sets which involve the fewest
possible rules, and then minimizes the number of literals in the rules [31]; or building
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a CNF classifer that fixes the number of rules, and then minimizes the number of lit-
erals [20, 39] to explain the positive instances of the class. This work also suffers from
the limitation that the rules only predict class 1, and the model predicts class 0 if no
rule applies. Unfortunately, in order to explain a class 0 instance, we need to use (the
negation of) all rules, making the explanations not succinct.

In this work we argue the number of rules is the wrong measure of explainability,
since, for example, 3 rules each involving 100 conditions are most likely less compre-
hensible than, say, 5 rules each involving 20 conditions. Indeed, since the explanation
of a single instance is just a single decision rule, the number of rules is nowhere near as
important as the size of the individual rules. So previous work on building minimum-
size decision sets has not used the best measure of size for explainability.

In this work we examine directly constructing decision sets of the smallest total
size, where the size of a rule with conditions C is |C| + 1 (the additional 1 is for the
class descriptor X). This leads to smaller decision sets (in terms of literals) which seem
far more appealing for explaining decisions.

It turns out that this definition of size leads to SAT models that are experimentally
harder to solve, but the resulting decision sets can be significantly smaller. However,
for sparse decision sets, where we are allowed to consider a smaller rule set if it does
not make too many errors in the classification, this new measure is no more difficult to
compute than the traditional rule count measure, and gives finer granularity decisions
on sparseness.

The contributions of this paper are

– The first approach to building optimal decision sets in terms of the total number of
literals required to define the entire set,

– Alternate SAT and MaxSAT models to tackle this problem, and sparse variations
which allow an accuracy versus size trade-off,

– Detailed experimental results showing the applicability of this approach, which
demonstrate that our best approach can generate optimal sparse decision sets quickly
with accuracy comparable to the best heuristic methods, but much smaller.

The paper is organized as follows. Section 2 introduces the notation and definitions
used throughout the paper. Related work is outlined in Section 3. Section 4 describes
the novel SAT- and MaxSAT-based encodings for the inference of decision sets. Exper-
imental results are analyzed in Section 5. Finally, Section 6 concludes the paper.

2 Preliminaries

Satisfiability and Maximum Satisfiability. We assume standard definitions for propo-
sitional satisfiability (SAT) and maximum satisfiability (MaxSAT) solving [9]. A propo-
sitional formula is said to be in conjunctive normal form (CNF) if it is a conjunction
of clauses. A clause is a disjunction of literals. A literal is either a Boolean variable or
its negation. Whenever convenient, clauses are treated as sets of literals. Moreover, the
term clausal will be used to denote formulas represented as sets of sets of literals, i.e.
in CNF. A truth assignment maps each variable to {0, 1}. Given a truth assignment, a
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clause is satisfied if at least one of its literals is assigned value 1; otherwise, it is falsi-
fied. A formula is satisfied if all of its clauses are satisfied; otherwise, it is falsified. If
there exists no assignment that satisfies a CNF formula F , then F is unsatisfiable.

In the context of unsatisfiable formulas, the maximum satisfiability (MaxSAT) prob-
lem is to find a truth assignment that maximizes the number of satisfied clauses. A
number of variants of MaxSAT exist [9, Chapter 19]. Hereinafter, we will be mostly
interested in Partial Weighted MaxSAT, which can be formulated as follows. The for-
mula can be represented as a conjunction of hard clauses (which must be satisfied) and
soft clauses (which represent a preference to satisfy those clauses) each with a weight.
Whenever convenient, a soft clause c with weight w will be denoted by (c, w). The Par-
tial MaxSAT problem consists in finding an assignment that satisfies all the hard clauses
and maximizes the total weight of satisfied soft clauses.

Classification Problems and Decision Sets. We follow the notation used in earlier
work [8, 31, 34, 44]. Consider a set of features F = {f1, . . . , fK}. All the features
are assumed to be binary (non-binary and numeric features can be mapped to binary
features using standard techniques [46]). Hence, a literal on a feature fr can be repre-
sented as fr (or ¬fr, resp.), denoting that feature fr takes value 1 (value 0, resp.). The
complete space of feature values (or feature space [25]) is U ,

∏K
r=1{fr,¬fr}.

A standard classification scenario is assumed, in which one is given training data
E = {e1, . . . , eM}. Each data instance (or example) ei ∈ E is a 2-tuple (πi, ci) where
πi ∈ U is a set of feature values and c ∈ C is a class. (This work focuses on binary
classification problems, i.e. C = {0, 1} but the proposed ideas are easily extendable to
the case of multiple classes.) An example ei can be seen as associating a set of feature
values πi with a class ci ∈ C. Moreover, we assume without loss of generality in our
context that dataset E partially defines a Boolean function φ : U → C, i.e. there are no
two examples ei and ej in E associating the same set of feature values with the opposite
classes. (Any two such examples can be removed from a dataset, incurring an error of
1.)

The objective of classification in machine learning is to devise a function φ̂ that
matches the actual function φ on the training data E and generalizes suitably well on
unseen test data [19,25,40,47]. In many settings (including sparse decision sets), func-
tion φ̂ is not required to match φ on the complete set of examples E and instead an
accuracy measure is considered; this imposes a requirement that φ̂ should be a relation
defined on U × C. Furthermore, in classification problems one conventionally has to
deal with an optimization problem, to optimize either with respect to the complexity of
φ̂, or with respect to the accuracy of the learnt function (to make it match the actual
function φ on a maximum number of examples), or both.

This paper focuses on learning representations of φ̂ corresponding to decision sets
(DS). A decision set is an unordered set of rules. For each example e ∈ E , a rule of
the form π ⇒ c, c ∈ C is interpreted as if the feature values of e agree with π then the
rule predicts that e has class c. Note that as the rules in decision sets are unordered,
it is often the case that some rules may overlap, i.e. multiple rules may agree with an
example e ∈ E .

Example 1. Consider the following set of 8 items (shown as columns)
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Item No. 1 2 3 4 5 6 7 8

Fe
at

ur
es L 1 1 0 1 0 1 0 0

C 0 0 0 1 0 1 1 0
E 1 0 1 0 0 1 1 1
S 0 1 0 0 1 1 0 1

Class H 0 0 1 0 1 0 0 1

A valid decision set for this data for the class H is

L⇒ ¬H
¬L ∧ ¬C ⇒ H

C ⇒ ¬H

The size of this decision set is 7 (one for each literal on the left hand and right hand
side, or alternatively, one for each literal on the left hand side and one for each rule).
Note how rules can overlap, both the first and third rule classify items 4 and 6. ut

3 Related Work

Interpretable decision sets are a rule-based predictive model that can be traced at least
to [11, 12]. To the best of our knowledge, the first logic-based approach to the problem
of decision set inference was proposed in [33]. Concretely, this work proposed a SAT
model for synthesizing a formula in disjunctive normal form that matches a given set
of training samples, which is then tackled by the interior point approach. Later, [34]
considered decision sets as a more explainable alternative to decision trees [10] and
decision lists [50]. The method of [34] yields a set of rules and heuristically minimizes
a linear combination of criteria such as the number of rules, the maximum size of a rule,
the overlap of the rules, and error.

The closest related work that produces decision sets as defined in [11] is by Ig-
natiev et al. [31]. Here the authors construct an iterative SAT model to learn minimal,
in terms of number of rules, perfect decision sets, that is where the decision set agrees
perfectly with the training data (which is assumed to be consistent). Afterwards, they
lexicographically minimize the total number of literals used in the decision set. As will
be shown later, they generate larger decision sets than our model, which minimizes the
total size of the target decision set. Their approach is more scalable for solving the
perfect decision set problem, since the optimization measure in use, i.e. the number
of rules, is more coarse-grained. The SAT-based approach of [31] was also shown to
extensively outperform the heuristic approach of [34].

In [39], the authors define a MaxSAT model for binary classification, where the
number of rules is fixed, and the size of the model is measured as the total number of
literals across all clauses. Rather than build a perfect binary classifier, they consider a
model that minimizes a linear combination of size and Hamming loss, to control the
trade-off between accuracy and intrepretability. The scalability of this approach is im-
proved in [20], where rules are learned iteratively on partitions of the training set. Note
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that they do not create a decision set as defined in [11, 31, 34], but rather a single for-
mula that defines the positive instances. The negative instances are specified by default
as the instances not captured by the positive formula. This limits their approach to bi-
nary classification, and also makes the representation smaller. For example, on the data
of Example 1 (and assuming the target number of rules was 1) they would produce the
decision set comprising a single rule ¬L ∧ ¬C. It also means the explainability is re-
duced for negative instances, since we need to use the (negation of the) entire formula
to explain their classification.

Integer Programming (IP) has also been used to create optimal rule-based models
which only have positive rules. In [15], the authors propose an IP model for binary
classification, where an example is classified as positive if and only if it satisfies at
least one clause of the model. The objective function of the IP minimizes a variation
on the Hamming loss, which is the number of incorrectly classified positive examples,
plus, for each incorrectly classified negative example, the number of clauses incorrectly
classifying it. The complexity of the model is controlled by a bound on the size of each
clause, defined as in this paper. Since the IP model has one binary variable for each
possible clause, the authors use column generation [6]. Even so, as the pricing problem
can be too expensive, it is solved heuristically for large data sets.

4 Encoding

This section describes two SAT-based approaches to the problem of computing decision
sets of minimum total size, defined as the total number of literals used in the model. It
is useful to recall that the number of training examples is M , while the number of
features is K. Hereinafter, it is convenient to treat a class label as an additional feature
having index K + 1. We first introduce models that define perfect decision sets that
agree perfectly with the training data, and then extend these to define sparse decision
sets that can trade off size of decision set with classification accuracy on the training
set.

4.1 Iterative SAT Model

We first design a SAT model which determines whether there exists a decision set of
given size N . To find the minimum N , we then iteratively call this SAT model while
incrementingN , until it is satisfied. For every value ofN , the problem of determining if
a model of size N exists is encoded into SAT as shown below. The idea of the encoding
is that we list the rules in one after the other across the N nodes, associating a literal
to each node. The end of a rule (a leaf node) is denoted by a literal associated to the
class. We track which examples of the dataset are valid at each node (i.e., they match all
the previous literals for this rule), and check that examples that reach the end of a rule
match the correct class. The encoding uses a number of Boolean variables described
below:

– sjr: node j is a literal on feature fr ∈ F ∪ C;
– tj : truth value of the literal for node j;
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– vij : example ei ∈ E is valid at node j;

The model is as follows:

– A node uses only one feature (or the class feature):

∀j∈[N ]

K+1∑
r=1

sjr = 1 (1)

– The last node is a leaf:
sNc (2)

– All examples are valid at the first node:

∀i∈[M ] vi1 (3)

– An example ei is valid at node j + 1 iff j is a leaf node, or ei is valid at node j and
ei and node j agree on the value of the feature sjr selected for that node:

∀i∈[M ]∀j∈[N−1] vij+1 ↔ sjc ∨ (vij ∧
∨
r∈[K]

(sjr ∧ (tj = πi[r]))) (4)

– If example ei is valid at a leaf node j, they should agree on the class feature:

∀i∈[M ]∀j∈[N ] (sjc ∧ vij)→ (tj = ci) (5)

– For every example there should be at least one leaf literal where it is valid:

∀i∈[M ]

∨
j∈[N ]

(sjc ∧ vij) (6)

The model shown above represents a non-clausal Boolean formula, which can be
clausified with the use of auxiliary variables [54]. Also note that any of the known
cardinality encodings can be used to represent constraint (1) [9, Chapter 2] (also see [1,
5, 7, 53]). Finally, the size (in terms of the number of literals) of the proposed SAT
encoding is O(N ×M ×K), which results from constraint (4).

Example 2. Consider a solution for 7 nodes for the data of Example 1. The representa-
tion of the rules, as a sequence of nodes is shown below:

1 2 3 4 5 6 7

L // ¬H ¬L // ¬C // H C // ¬H
The interesting (true) decisions for each node are given in the following table

1 2 3 4 5 6 7

sjr s1L s2H s3L s4C s5H s6C s7H

tj 1 0 0 0 1 1 0

vij v11 v12 v13 v34 v35 v16 v47
... v22

... v54 v55
... v67

v81 v42 v83 v74 v85 v86 v77
v62 v84
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Note how at the end of each rule, the selected variable is the class H . Note that at the
start and after each leaf node all examples are valid, and each feature literal reduces the
valid set for the next node. In each leaf node j the valid examples are of the correct
class determined by the truth value tj of that node. ut

The iterative SAT model tries to find a decision set of size N . If this fails, it tries
to find a decision set of size N + 1. This process continues until it finds a decision set
of minimal size, or a time limit is reached. The reader may wonder why we do not use
binary search instead. The difficulty with this is that the computation grows (potentially)
exponentially with size N , so guessing a large N can mean the whole problem fails to
solve.

Example 3. Consider the dataset shown in Example 1. We initially try to find a decision
set of size 1, which fails, then of size 2, etc. until we reach size 7 where we determine
the decision set: ¬L ∧ ¬C ⇒ H , L ⇒ ¬H , C ⇒ ¬H of size 7 by finding the model
shown in Example 2. ut

4.2 MaxSAT Model

Rather than using the described iterative SAT-based procedure, which iterates over vary-
ing size N of the target decision set, we can allocate a predefined number of nodes,
which serves as an upper bound on the optimal solution, and formulate a MaxSAT
problem minimizing the number of nodes used. Let us add a flag variable uj for every
available node. Variable uj is true whenever the node j is unused and false otherwise.
Consider the following constraints:

1. A node either decides a feature or is unused:

∀j∈[N ] uj +
∑

r∈[K+1]

sjr = 1 (7)

2. If a node j is unused then so are all the following nodes

∀j∈[N−1] uj → uj+1 (8)

3. The last used node is a leaf

∀j∈[N−1] uj+1 → uj ∨ sjc (9)
uN ∨ sNc (10)

The constraints above together with constraints (3), (4), (5), and (6) comprise the
hard part of the MaxSAT formula, i.e. every clause of it must be satisfied. As for the
optimization criterion, we maximize

∑
j∈[N ] uj , which can be trivially represented as

a list of unit soft clauses of the form (uj , 1).
The model is still used iteratively in the worst case. We guess an upper bound N on

the size of the decision set. We use the model to search for a decision set of size less
than or equal to N . If this fails we increase N by some number (say 10) and retry, until
the time limit is reached.
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Example 4. Revisiting the solution shown in Example 1 when N is set to 9 we find
the solution illustrated in Example 2 extended so that the last two nodes are unused:
u8 = u9 = true . The last used node 7 is clearly a leaf. Note that validity (vij) and truth
value (tj) variables are irrelevant to unused nodes j. ut

4.3 Separated Models and Multi-Classification

A convenient feature of minimal decision sets is the following. The union of a mini-
mal decision set that correctly classifies the positive instances (and doesn’t misclassify
any negative instances as positive) and a minimal decision set that correctly classifies
the negative instances (and doesn’t misclassify any positive instances as negative) is a
minimal decision set for the entire problem.

We can construct a separate SAT model for the positive rules and negative rules by
simply restricting constraint (6) to only apply to examples in [M ] of the appropriate
class.

Clearly, the “separated models” are not much smaller than the complete model
described in Section 4.1; each separated model still includes constraint (4) for each
example leading to the sizeO(N×M×K). The advantage arises because the minimal
size required for each half is smaller.

Example 5. Consider the data set shown in Example 1. We can iteratively construct
decision rules for the positive instances: ¬L ∧ ¬C ⇒ H of size 3, and the negative
instances: L ⇒ ¬H,C ⇒ ¬H of size 4. This is faster than solving the problems
together, iterating from size 1 to size 7 to eventually find the same solution. ut

The same applies for multi-classification rules, where we need to decide on |C|
different classes. Assuming the class feature has been binarised into |C| different class
binary variables, we can modify our constraints to build a model Mc for each separate
class c ∈ C as follows:

– We restrict constraint (6) to the examples i in the class c, e.g.

∀i∈[M ],ci=c

∨
j∈[N ]

(sjc ∧ vij) (11)

– We restrict leaf nodes to only consider true examples of the class

∀j∈[N ] sjc → tj (12)

This modification is correct for both the iterative SAT and the MaxSAT models.

4.4 MaxSAT Model for Sparse Decision Sets

We can extend the MaxSAT model rather than to find minimal perfect decision sets to
look for sparse decisions sets that are accurate for most of the instances. We minimize
the objective of number of misclassifications (including non-classifications, where no
decision rule gives information about the item) plus the size of the decision set in terms



Computing Optimal Decision Sets with SAT 9

of nodes multiplied by a discount factorΛwhich records thatΛ fewer misclassifications
are worth the addition of one node to the decision set. Typically we define Λ = dλMe
where λ is the regularized cost of nodes in terms of misclassifications.

We introduce variable mi to represent that example i ∈ [M ] is misclassified. The
model is as follows:

– If example ei is valid at a leaf node j then they agree on the class feature or the
item is misclassified:

∀i∈[M ]∀j∈[N ] (sjc ∧ vij)→ (tj = ci ∨mi) (13)

– For every example there should be at least one leaf literal where it is valid or the
item is misclassified (actually non-classified):

∀i∈[M ] mi ∨
∨
j∈[N ]

(sjc ∧ vij) (14)

together with all the MaxSAT constraints from Section 4.2 except constraints (5) and (6).
The objective function is ∑

i∈[M ]

mi +
∑
j∈[N ]

Λ(1− uj) +NΛ

represented as soft clauses (¬mi, 1), i ∈ [M ], and (uj , Λ), j ∈ [N ].
Note that the choice of regularized cost λ is crucial. As λ gets higher values, the

focus of the problem shifts more to “sparsification” of the target decision set, instead of
its accuracy. In other words, by selecting higher values of λ (and hence of Λ as well),
a user opts for simple decision sets, thus, sacrificing their quality in terms of accuracy.
If the value of λ is too high, the result decision set may be empty as this will impose a
high preference of the user to dispose of all literals in the decision set.

4.5 Separated Sparse Decision Sets

We can modify the definition of misclassifications in order to support a separated solu-
tion. Suppose that an example ei ∈ E is of class ci ∈ C then we count the number of
misclassifications of that example as follows:

– If example ei is not classified as class ci that counts as one misclassification.
– If example ei is classified as class cj ∈ C, cj 6= ci, then this counts as one misclas-

sification per class.

With this definition we can compute the optimal decisions sets per class independently
and join them together afterwards. The model for each class c ∈ C is identical to that
of Section 4.4 with the following change: we include constraint (12) and modify con-
straint (14) to

– For every example in the class c there should be at least one leaf literal where it is
valid or the example is misclassified (actually non-classified):

∀i∈[M ],ci=c mi ∨
∨
j∈[N ]

(sjc ∧ vij) (15)
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Note that there is still an mi variable for every example in every class. For examples of
class c this counts as if they were not correctly classified as class c, while for examples
not in class c it counts as if they were incorrectly classified as class c.

5 Experimental Results

This section aims at assessing the proposed SAT-based approaches for computing opti-
mal decision sets from the perspective of both scalability and test accuracy for a number
of well-known datasets.

Experimental setup. The experiments were performed on the StarExec cluster1. Each
process was run on an Intel Xeon E5-2609 2.40GHz processor with 128 GByte of mem-
ory, in CentOS 7.7. The memory limit for each individual process was set to 16GByte.
The time limit used was set to 1800s for each individual process to run.

Implementation and other competitors. Based on the publicly available implemen-
tation of MinDS [31, 51], all the proposed models were implemented in a prototype as
a Python script instrumenting calls to the Glucose 3 SAT solver [2,27]. The implemen-
tation targets the models proposed in the paper, namely, (1) the iterative SAT model
studied in Section 4.1 and (2) its MaxSAT variant (see Section 4.2) targeting minimal
perfect decision set but also (3) the MaxSAT model for computing sparse decision sets
as described in Section 4.4. All models target independent computation of each class2,
as discussed in Section 4.3 and Section 4.5. As a result, the iterative SAT model and
its MaxSAT variant in the following are referred to as opt and mopt. Also, to illustrate
the advantage of separated models over the model aggregating all classes, an aggre-
gated SAT model was tested, which is referred to as opt∪. Finally, several variants of
the MaxSAT model targeting sparse decision sets called sp[λi] were tested with three
values of regularized cost: λ1 = 0.005, λ2 = 0.05, and λ3 = 0.5. One of the consid-
ered competitors were MinDS2 and MinDS?2 [31], which in the following are referred
to as mds2 and mds?2, respectively. While the former tool minimizes the number of
rules, the latter does lexicographic optimization, i.e. it minimizes the number of rules
first and then the total number of literals. Additionally, MinDS was modified to pro-
duce sparse decision sets, similarly to what is described in Section 4.4. This extension
also makes use of MaxSAT to optimize the sparse objective rather than SAT, which
was originally used. In the following comparison, the corresponding implementation is
named mds2[ρi], with regularization cost ρ1 = 0.05, ρ2 = 0.1, and ρ3 = 0.5. Note that
ρi 6= λi, i ∈ [3] since the measures used by the two models are different. One targets
rules and the other – literals. In order to, more or less, fairly compare the scalability
of the new model sp and of the sparse variant of mds?2, we considered a few configu-
rations of sp[ρi] with ρi = λi

K , where K is the number of features in a dataset, where
we consider a rule equivalent to K literals. To tackle the MaxSAT models, the RC2-B
MaxSAT solver was used [28].

1 https://www.starexec.org/
2 The prototype adapts all the developed models to the case of multiple classes, which is moti-

vated by the practical importance of non-binary classification.

https://www.starexec.org/
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Fig. 1: Scalability of all competitors on the complete set of instances and the quality of solutions
i terms of decision set size.

A number of state-of-the-art algorithms were additionally considered including the
heuristic methods CN2 [11,12], and RIPPER [13], as well as MaxSAT-based IMLI [20]
(which is a direct successor of MLIC [39]). The implementation of CN2 was taken
from Orange [45] while a publicly available implementation of RIPPER [56] was used.
It should be noted that given a training dataset, IMLI and RIPPER compute only one
class. To improve the accuracy reported by both of these competitors, we used a default
rule that selects a class (1) different from the computed one and (2) represented by
the majority of data instances in the training data. The default rule is applied only if
none of the computed rules can be applied. Finally, IMLI takes a constant value k of
rules in the clausal representation of target class to compute. We varied k from 1 to
16. The best results (both in terms of performance and test accuracy) were shown by
the configuration targeting the smallest possible number of rules, i.e. k = 1; the worst
results were demonstrated for k = 16. Thus, only these extreme values of k were used
below represented by imli1 and imli16, respectively.

Datasets and methodology. Experimental evaluation was performed on a subset of
datasets selected from publicly available sources. These include datasets from UCI Ma-
chine Learning Repository [55] and Penn Machine Learning Benchmarks. Note that
all the considered datasets were previously studied in [20, 31]. The number of selected
datasets is 71. Ordinal features in all datasets were quantized so that the domain of
each feature gets to 2, 3, or 4. This resulted in 3 families of benchmarks, each of size
71. Whenever necessary, quantization was followed by one-hot encoding [46]. In the
datasets used, the number of data instances varied from 14 to 67557 while the number
of features after quantization varied from 3 to 384.

Finally, we applied the approach of 5-fold cross validation, i.e. each dataset was
randomly split into 5 chunks of instances; each of these chunks served as test data
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Fig. 2: Accuracy of the considered approaches.

while the remaining 4 chunks were used to train the classifiers. This way, every dataset
(out of 71) resulted in 5 individual pairs of training and test datasets represented by 80%
and 20% of data instances. Therefore, each quantized family of datasets led to 355 pairs
of training and test datasets. Hence, the total number of benchmark datasets considered
is 1065. Every competitor in the experiment was run to compute a decision set for each
of the 1065 training datasets, which was then tested for accuracy on the corresponding
test data.

It is important to mention that the accuracy for all the tools was tested by an external
script in a unified way. Concretely, (1) if a rule “covers” a data instance of a wrong
class, the instance is deemed misclassified (even if there is another rule of the right
class covering this data instance); (2) if none of the rules of a given class covers a
data instance of that class, the instance is deemed misclassified. Afterwards, assuming
the total number of misclassified instances is denoted by E while the total number of
instances is M , the accuracy is computed as a value M−E

M × 100%.

Testing scalability. Figure 1a shows the performance of the considered competitors on
the complete set of benchmark instances. As one can observe, ripper outperforms all
the other tools and is able to train a classifier for 1048 of the considered datasets given
the 1800s time limit. The proposed MaxSAT models for sparse decision sets sp[λ3]
and mds?2[ρ3] (which are the configurations with the largest constant parameters) come
second and third with 1024 and 1000 instances solved, respectively. The fourth place
is taken by cn2, which can successfully deal with 975 datasets. The best configura-
tion of imli, i.e. imli1, finishes with 802 intances solved while the worst configuration
imli16 copes with only 620 datasets. Finally, the worst results are demonstrated by the
approaches that target perfectly accurate decision sets opt, mopt, and opt∪ but also by
the sparse approaches with low regularized cost sp[ρ1] and sp[ρ2]. For instance, opt∪
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Fig. 3: Comparison of sp[λ3] and ripper.

solves only 196 instances. This should not come as surprise since the problem these
tools target is computationally harder than what the other approaches solve.

Testing accuracy. Having said that, perfectly accurate decision sets once computed
have the highest possible accuracy. This is confirmed by Figure 2b, which depicts the
accuracy obtained by all the tools for the datasets solved by all the tools. Indeed, as
one can observe, the virtual perfect tool, which acts for all the approaches targeting
perfectly accurate decision sets, i.e. opt, mopt, opt∪, mds2, and mds?2, beats the other
tools in terms of test accuracy. Their average test accuracy on these datasets is 85.89%3.
In contrast, the worst accuracy is demonstrated by cn2 (43.73%). Also, the average
accuracy of ripper, sp[λ3], mds?2[ρ3], imli1, imli16 is 80.50%, 67.42%, 61.71%, 76.06%,
77.42%, respectively.

The picture changes drastically if we compare test accuracy on the complete set
of benchmark datasets. This information is shown in Figure 2a. Here, if a tool does
not solve an instance, its accuracy for the dataset is assumed to be 0%. Observe that
the best accuracy is achieved by ripper (68.13% on average) followed by the sparse
decision sets computed by sp[λ3] and mds?2[ρ3] (60.91% and 61.23%, respectively).
The average accuracy achieved by imli1 and imli16 is 50.66% and 28.26% while the
average accuracy of cn2 is 47.49%.

Testing interpretability (size). From the perspective of interpretability, the smaller a
decision set is the easier it is for a human decision maker to comprehend. This holds
for the number of rules in a decision set but also (and more importantly) for the total
number of literals used. Figure 1b depicts a cactus plots illustrating the size of solutions
in terms of the number of literals obtained by each of the considered competitors. A

3 This average value is the highest possible accuracy that can be achieved on these datasets
whatever machine learning model is considered.
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clear winner here is sp[λ3]. As can be observed, for more than 400 datasets, decision
sets of sp[λ3] consist of only one literal4. Another bunch of almost 400 datasets are
represented by sp[λ3] with 3 literals. Getting these small decision sets is a striking
achievement in light of the overall high accuracy reached by sp[λ3]. The average size of
solutions obtained by sp[λ3] is 4.18. Note that imli1 gets close to this with 5.57 literals
per dataset on average although it always compute only one rule. In clear contrast with
this, the average solution size of ripper is 35.14 while the average solution of imli16 has
46.29 literals. Finally, the result of cn2 is 598.05 literals.

It is not surprising that perfectly accurate decision sets, i.e. those computed by opt,
opt∪, mopt, as well as mds2 and mds?2, in general tend to be larger. It is also worth
mentioning that mds?2[ρ3] obtains sparse decision sets of size 14.52 on average while
the original (non-sparse) version gets 40.70 literals per solution.

A few more details. Figure 3 and Figure 4 detail a comparison of sp[λ3] with ripper
and imli1, respectively. All these plots are obtained for the datasets solvable by each
pair of competitors. Concretely, as can be seen in Figure 4a and Figure 4b, the size
and accuracy of sp[λ3] and imli1 are comparable. However, as imli1 computes solutions
representing only one class and it is significantly outperformed by sp[λ3], the latter
approach is deemed a better alternative. Furthermore and although the best performance
overall is demonstrated by ripper, its accuracy is comparable with the accuracy of sp[λ3]
(see Figure 3b) but the size of solutions produced by ripper can be several orders of
magnitude larger than the size of solutions of its rival, as one can observe in Figure 3a.

Finally, a crucial observation to make is that since both RIPPER and IMLI compute
a representation for one class only, they cannot provide a user with a succinct explana-
tion for the instances of other (non-computed) classes. Indeed, an explanation in that

4 In a unit-size decision set, the literal is meant to assign a constant class. This can be seen as
applying a default rule.
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case includes the negation of the complete decision set. This is in clear contrast with our
work, which provides a user with a succinct representation of every class of the dataset.

6 Conclusion

We have introduced the first approach to build decision sets by directly minimizing the
total number of literals required to describe them. The approach can build perfect de-
cision sets that match the training data exactly, or sparse decision sets that trade off
accuracy on training data for size. Experiments show that sparse decision sets can be
preferred to perfectly accurate decision sets. This is caused by (1) their high accuracy
overall and (2) the fact that they are much easier to compute. Second, it is not surprising
that the regularization cost significantly affects the efficiency of sparse decision sets –
the smaller the cost is, the harder it is compute the decision set and the more accurate
the result decision set is. This fact represents a reasonable trade-off that can be consid-
ered in practice. Note that points 1 and 2 hold for the models proposed in this paper
but also for the sparse variants of prior work targeting minimization of the number of
rules [31]. Third, although heuristic methods like RIPPER may scale really well and
produce accurate decision sets, their solutions tend to be much larger than sparse de-
cision sets, which makes them harder to interpret. All in all, the proposed approach to
sparse decision sets embodies a viable alternative to the state of the art represented by
prior logic-based solutions [20,31,39] as well as by efficient heuristic methods [11–13].

There are number of interesting directions to extend this work. There is considerable
symmetry in the models we propose, and while we tried adding symmetry breaking
constraints to improve the models, what we tried did not make a significant difference.
This deserves further exploration. Another interesting direction for future work is to
consider other measures of interpretability, for example the (possibly weighted) average
length of a decision rule, where we are not concerned about the total size of the decision
set, but rather its succinctness in describing any particular instance.
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