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Abstract

Decision sets and decision lists are two of the most easily explainable machine learning
models. Given the renewed emphasis on explainable machine learning decisions, both of
these machine learning models are becoming increasingly attractive, as they combine small
size and clear explainability. In this paper, we define size as the total number of literals in
the SAT encoding of these rule-based models as opposed to earlier work that concentrates
on the number of rules. In this paper, we develop approaches to computing minimum-size
“perfect” decision sets and decision lists, which are perfectly accurate on the training data,
and minimal in size, making use of modern SAT solving technology. We also provide a
new method for determining optimal sparse alternatives, which trade off size and accuracy.
The experiments in this paper demonstrate that the optimal decision sets computed by
the SAT-based approach are comparable with the best heuristic methods, but much more
succinct, and thus, more explainable. We contrast the size and test accuracy of optimal
decisions lists versus optimal decision sets, as well as other state-of-the-art methods for
determining optimal decision lists. Finally, we examine the size of average explanations
generated by decision sets and decision lists.

1. Introduction

With the increasing use of Machine Learning (ML) models to automate decisions1, there has
been an upsurge in interest in explainable artificial intelligence (XAI)2 where these models
can explain, in a manner understandable by humans, why they made a decision. This in
turn has led to a re-examination of machine learning models that are implicitly easy to
explain.

1. (Jordan & Mitchell, 2015; LeCun, Bengio, & Hinton, 2015; Mnih, Kavukcuoglu, Silver, Rusu, Veness,
Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, et al., 2015)

2. (Baehrens, Schroeter, Harmeling, Kawanabe, Hansen, & Müller, 2010; Ribeiro, Singh, & Guestrin, 2016;
Doshi-Velez & Kim, 2017; Lundberg & Lee, 2017; Ribeiro, Singh, & Guestrin, 2018; Shih, Choi, &
Darwiche, 2018; Li, Liu, Chen, & Rudin, 2018; Montavon, Samek, & Müller, 2018; Lipton, 2018; Monroe,
2018; Evans & Grefenstette, 2018; Ignatiev, Narodytska, & Marques-Silva, 2019b, 2019c; Guidotti,
Monreale, Ruggieri, Turini, Giannotti, & Pedreschi, 2019b; Guidotti, Monreale, Giannotti, Pedreschi,
Ruggieri, & Turini, 2019a; Darwiche, 2020; Darwiche & Hirth, 2020; Ignatiev, 2020; Marques-Silva,
Gerspacher, Cooper, Ignatiev, & Narodytska, 2020)

c©2021 AI Access Foundation. All rights reserved.
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Arguably the most explainable forms of ML models are decision trees3, decision lists4

and decision sets5, since these encode simple logical rules. Of these, decision sets provide
the simplest explanation, since if a rule “fires” for a given data instance, then this rule is
the only explanation required. To explain decision lists, i.e. ordered sets of decision rules,
we additionally need to take the order of rules into account.

In order to make explanations easy for humans to understand they should be as concise
as possible.6 There has been considerable investigation into producing the smallest possible
optimal perfect decision trees (Narodytska et al., 2018; Verhaeghe et al., 2019), where the
decision tree agrees perfectly with the training data, as well as producing the smallest
possible sparse decision trees (Hu et al., 2019; Aglin et al., 2020), where there is a trade-off
between size of the decision tree versus its accuracy on the training data.

Recent work has examined learning decision sets where the number of rules is minimized
first and the number of literals is minimized afterwards (Ignatiev et al., 2018), as well as
constructing a CNF classifier that minimizes the number of literals in the fixed number
of rules (Malioutov & Meel, 2018; Ghosh & Meel, 2019) to explain the instances of the
positive class. The latter two works also suffer from the limitation that only one class,
class 1, is predicted by the rules, and class 0 is represented by the fact that no rule applies.
Unfortunately, the explanation of negative instances is not succinct as explaining a class 0
example requires (the negation of) all rules.

We argue that previous work has not used the best measure of explainability, since,
for instance, 2 rules each involving 80 conditions are significantly less explainable than 4
rules each involving only 10 conditions. Therefore, we investigate directly building decision
sets that minimize the size redefined as the total number of literals used. This contributes
to smaller decision sets (with respect to literals) which tend to be attractive to explain
decisions. Note that the measure of size can also apply to decision lists.

There has been investigation of the method of optimizing decision lists (Angelino et al.,
2017; Rudin & Ertekin, 2018; Angelino et al., 2018) that relies on a two-phase approach.
First, decision rules are mined using some association rule mining techniques (Agrawal,
Imieliński, & Swami, 1993), then an optimal order of the rules is found via search. In
contrast, the method proposed in this paper directly generates all the rules of the optimal
decision list as part of the search. This means it can generate decision rules which are
meaningful in the context of their position in the target decision list, but could by themselves
not provide valuable information on the training data, and therefore would not have been

3. (Hu, Rudin, & Seltzer, 2019; Aglin, Nijssen, & Schaus, 2020; Narodytska, Ignatiev, Pereira, & Marques-
Silva, 2018; Verhaeghe, Nijssen, Pesant, Quimper, & Schaus, 2019; Apté & Weiss, 1997; Marques-Silva
et al., 2017; Dufour, 2014; Bessiere, Hebrard, & O’Sullivan, 2009; Avellaneda, 2020; Janota & Morgado,
2020; Schidler & Szeider, 2021)

4. (Hancock, Jiang, Li, & Tromp, 1996; Rivest, 1987; Rudin & Ertekin, 2018; Angelino, Larus-Stone, Alabi,
Seltzer, & Rudin, 2018; Angelino, Larus-Stone, Alabi, Seltzer, & Rudin, 2017; Wang, Rudin, Doshi-Velez,
Liu, Klampfl, & MacNeille, 2017; Clark & Niblett, 1989; Yu, Ignatiev, Le Bodic, & Stuckey, 2020a)

5. (Kim, Khanna, & Koyejo, 2016; Doshi-Velez & Kim, 2017; Miller, 2019; Clark & Niblett, 1989; Clark
& Boswell, 1991; Lakkaraju, Bach, & Leskovec, 2016; Ignatiev, Pereira, Narodytska, & Marques-Silva,
2018; Malioutov & Meel, 2018; Dash, Günlük, & Wei, 2018; Ghosh & Meel, 2019; Yu, Ignatiev, Stuckey,
& Le Bodic, 2020b; Ignatiev, Lam, Stuckey, & Marques-Silva, 2021)

6. Interpretability is generally accepted to be a subjective concept, without a rigorous definition (Lipton,
2018). In this paper we measure interpretability in terms of the overall succinctness of the information
provided by a model to explain a given prediction (see Section 6 for details).
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mined by the approach of (Angelino et al., 2017; Rudin & Ertekin, 2018; Angelino et al.,
2018). The two-step process can also generate many candidate rules to order when the
number of features is large. Finally, this earlier approach does not optimize rules in terms
of reducing the total number of literals, which may result in larger decision list models.

The previous methods focus on sparse decision lists, which trade size for accuracy on
the training data. In contrast, we can also find optimal perfect decision lists, which agree
completely with the training data.

Although the definition of size triggers harder computation in SAT models, the resulting
machine learning models can be considerably smaller. However, for sparse decision sets and
decision lists, the new measure is no more challenging for computation than the traditional
rule count measure, and provides better granularity decisions on sparseness.

In summary, the contributions of this paper are:

• An approach to building optimal decision sets and decision lists in terms of the total
number of literals required.

• The first method we are aware of to determine optimal decision lists, which agree with
all the training data.

• The first SAT-based approach to find optimal sparse decision sets and decision lists
that allow a trade-off between size and accuracy.

• We introduce the notion of explanation size which, for a particular example, de-
termines how much information is required to explain the classification given by a
machine learning model. We compare explanation size for decision lists and decision
sets.

• Experiments demonstrating that our optimal sparse decision sets are as accurate as
the best heuristic methods, but more concise.

• Experiments demonstrating that our approach to optimal sparse decision lists gener-
ates more accurate decision lists than previous methods

The paper is organized as follows. Section 2 presents the notation and definitions used
throughout the paper. Section 3 outlines related work. The innovative SAT-based encodings
for the inference of decision sets are described in Section 4. Section 5 illustrates encodings
for computing decision lists. Section 6 introduces the notion of explanation size. The
analysis of experimental results is discussed in Section 7. Finally, Section 8 concludes the
paper.

2. Preliminaries

(Maximum) Satisfiability. The input of a Boolean satisfiability problem (SAT) (Biere,
Heule, van Maaren, & Walsh, 2009) consists of a formula over a set of propositional variables
using various logic operators on these variables. Solving a SAT problem consists in deter-
mining whether there exists an assignment of true or false value to each variable, called a
truth assignment, such that the entire formula is satisfied. Otherwise, the formula is unsat-
isfiable. In the more specific conjunctive normal form (CNF), the formula is a conjunction
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of clauses, and each clause is a disjunction of literals. A literal is a variable or its negation.
Hence, a CNF formula can be satisfied if and only if at least one literal per clause can be
set to true.

In the context of unsatisfiable formulas, the maximum satisfiability (MaxSAT) problem
consists in finding a truth assignment that maximizes the number of satisfied clauses. In
the Partial Weighted MaxSAT variant (Biere et al., 2009, Chapter 19), each clause c is
either soft and has a weight wc, or it is hard. An optimal solution then consists of a truth
assignment that satisfies all hard clauses and maximizes the sum of the weights of the
satisfied soft clauses.

Classification Problems. We consider a classification problem with a set of features F =
{f1, . . . , fK} and a label C, all binary (or binarized using standard techniques (Pedregosa,
Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Van-
derplas, Passos, Cournapeau, Brucher, Perrot, & Duchesnay, 2011)). The complete space
of feature values (or feature space (Han, Kamber, & Pei, 2012)) is U ,

∏K
r=1{fr,¬fr}. The

training set is denoted by E = {e1, . . . , eM} and each instance ei ∈ E is a pair (πi, ci) where
πi ∈ U and ci ∈ C. Furthermore, we assume without loss of generality in our context that
dataset E partially defines a Boolean function φ : U → C, i.e. for any examples ei and ej in
E associated with a same set of feature values, their classes are also the same.

The objective of classification in machine learning is to devise a function φ̂ that matches
the actual function φ on the training data E and generalizes suitably well on unseen test
data (Fürnkranz, Gamberger, & Lavrac, 2012; Han et al., 2012; Mitchell, 1997; Quinlan,
1993). In many settings (including sparse7 decision sets and lists), function φ̂ is not required
to match the actual function φ on the complete set of examples E and instead an accuracy
measure is considered. Moreover, in classification problems one conventionally has to deal
with an optimization problem, to optimize either with respect to the complexity of φ̂, or
with respect to the accuracy of the learnt function (to make it match the actual function φ
on a maximum number of examples), or both.

Rules, Decision Sets and Decision Lists. We can naturally represent a binary feature
f ∈ F as a Boolean variable, and its two possible values as a literal or its negation, denoted
f and ¬f . A rule has the form IF “instance satisfies formula” THEN “predict c”, where
the formula is a conjunction on a subset of the feature literals.

A Decision Set (DS) is an unordered set of rules. A decision set misclassifies an instance
if no rule matches the instance, or if there exists a rule that predicts a wrong class.

A Decision List (DL) is an ordered set of rules. The first rule of a decision list that
matches an instance is the one that classifies the instance. Decision lists are often written
as a single cascade of IF-THEN-ELSEs, with the last rule often a “catch-all”, or default
rule, which matches all (remaining) instances to some class.

Example 1. Consider the following set of 8 items (shown as columns):

7. In contrast to perfect rule-based ML models, which aim at getting the highest possible training accuracy,
sparse rule-based ML models trade off training accuracy for model size.
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Item No. 1 2 3 4 5 6 7 8

F
ea

tu
re

s

A 1 1 0 0 0 0 0 0
B 0 1 1 1 0 0 0 0
C 1 0 0 1 1 1 0 0
D 0 1 1 0 0 1 1 1
E 0 1 0 1 1 0 0 1

Class H 1 1 0 0 1 1 0 0

A valid and optimal decision set for this data is

if A then H
if ¬A ∧ ¬C then ¬H
if ¬B ∧ C then H
if ¬A ∧B then ¬H

The size of this decision set is 11 (one for each literal on the left side and one for each
rule, or alternatively, one for each literal on the left hand side and right hand side). Note
how rules can overlap: both the first and third rule classify item 1.

A valid and optimal decision list for the data above is

if A then H
else if B then ¬H
else if C then H
else if true then ¬H

The size of the decision list is 7, and there is no overlap of rules by definition: item 1 is
classified by the first rule only. Note that the last rule is a default rule.

Throughout the paper, each rule will be represented as a path graph, i.e. a graph reduced
to a single path, where each literal is a node on the path. For example, the first two rules
of the decision set would be represented as the two path graphs:

A // H ¬A // ¬C // ¬H

By construction, the leaf (i.e. last) node of each path corresponds to a class literal (see
Example 2 for full example). Our SAT models will represent a Decision set (or list) as a
concatenation of these path graphs into a single path graph.

3. Related Work

The first work we are aware of for synthesizing a formula to cover a given partially defined
(by E in our notation) Boolean function φ is by Michalski (1969).8 Their general algorithm
called AQ can be applied to the classification problem when C = {c} to construct a DNF
formula by greedily choosing a minimal subset of features of each positive instance which
does not cover any negative instance, until all positive instances are covered. The approach
is also extended to multi-classification problems.

8. We thank the anonymous reviewers for pointing this out.
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Decision sets and decision lists are rule-based predictive models that date back to the
late 80s (Rivest, 1987; Clark & Niblett, 1989; Clark & Boswell, 1991). To the best of
our knowledge, Kamath, Karmarkar, Ramakrishnan, and Resende (1992) proposed the first
logic-based approach to constructing decision sets. Specifically, they introduced a SAT-
based algorithm to synthesize a formula in disjunctive normal form (DNF) that matches
a given set of training samples, which is tackled by an interior point method afterwards.
Later, Lakkaraju et al. (2016) defined an approach to yielding a set of rules and minimizing
a linear combination of criteria, e.g. the upper bound of the size in a rule, the number of
rules, the number of overlapping rules, and misclassification.

The latest related approach to constructing decision sets is provided by Ignatiev et al.
(2018). They develop a SAT model to iteratively compute minimal perfect decision sets
where the training examples are perfectly classified and the number of rules is minimized.
Then, the total number of literals required in a decision set is lexicographically minimized.
However, as will be demonstrated later, the method computes larger decision sets than our
approach that aims to minimize the total number of literals in a target decision set. Their
method achieves better scalability to generate perfect decision sets as the more coarse-
grained optimization measure is applied, i.e. the number of rules. The SAT method (Ig-
natiev et al., 2018) is also demonstrated to comprehensively outstrip the heuristic approach
of Lakkaraju et al. (2016).

Malioutov and Meel (2018) provide a MaxSAT approach for the problem of binary
classification, where they fix the number of rules and define the size in the model as the total
number of literals across all clauses. Their proposed model minimizes a linear combination of
Hamming loss and size, controlling the trade-off between explainability and accuracy instead
of computing a perfect binary classifier. The scalability of this method is enhanced by Ghosh
and Meel (2019), where rules are computed iteratively on partitions of the training data.
However, only a single formula that classifies the positive items is computed rather than a
decision set as defined in other work (Clark & Boswell, 1991; Lakkaraju et al., 2016; Ignatiev
et al., 2018). Although the representation in the approach is smaller, explainability is
reduced for negative examples where the whole formula is used to explain their classification.

Integer Programming (IP) has also been used to construct optimal rule-based models
that only classify positive examples. Dash et al. (2018) introduce an IP approach for binary
classification where an instance is classified as positive if and only if at least one rule of the
model fires the example. The objective function of the model is to minimize a variation
of Hamming loss, which is the number of misclassified positive instances, plus, for each
misclassified negative example, the number of clauses misclassifying it. The bound on the
size of each clause determines the complexity of this model. Column generation (Barnhart,
Johnson, Nemhauser, Savelsbergh, & Vance, 1998) is used in the IP model as it has one
binary variable for each possible clause. However, since the model is only solved heuristically
for large datasets, the pricing problem tends to be too expensive.

One recent approach (Rudin & Ertekin, 2018) provides decision lists that have some
optimality guarantee. Given a fixed set of decision rules, it chooses a minimum-size ordered
subset of these rules; the order essentially terminates when a default rule is chosen. The
authors model the problems as an IP and solve it with a MIP (Mixed IP) solver. The
objective is a combination of training accuracy and sparsity, minimizing misclassifications
where every rule used incurs a “cost” of C misclassifications, and every literal used costs
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C1 misclassifications. The method is slow, and somewhat restricted by the time required
to generate all potential possible rules as input. They consider datasets with up to 3000
examples and 60 features, but cannot prove optimality of their solutions on the data tested.
One advantage of the approach is that it is easy to customize, for example, favoring the use
of certain features, or extending to cost-sensitive learning.

To the best of our knowledge, the first method to generate optimal decision lists extends
the approach of Rudin and Ertekin (2018) using the same idea of ordering a fixed set of
decision rules, but using a bespoke branch-and-bound algorithm (Angelino et al., 2018).
The method makes use of bounding methods and symmetry elimination techniques. They
minimize regularized misclassification, where each rule costs ρM misclassification errors
where M is the number of training examples. The approach relies on the sparsification
parameter ρ to limit the set of rules it needs to consider. It can find and prove optimal
solutions to large problems (hundreds of thousands of examples), the main limitation is on
the number of features, since the number of possible decision rules grows exponentially in
the number of features. The datasets they consider have up to 28 (binary) features, and at
most 189 decision rules are considered.

4. Decision Set Encoding

This section introduces two SAT-based approaches to learning decision sets of minimum total
size, referring to the total number of literals used in a model. We recall that the number of
training data is M , whereas the number of features is K. For binary classification problems
we consider that there is one class pseudo-feature C = {c} and examples have this feature set
to true or false. For three or more classes, we assume a one-hot encoding (Pedregosa et al.,
2011), i.e. each class value is represented by a single binary feature, with each example
having exactly one such feature from C set to true. We will describe the approaches to
computing perfect decision sets that perfectly classify the training examples and sparse
models that can trade off accuracy for size.

4.1 Iterative SAT Model for Perfect Decision Sets

We first introduce a SAT-based model which determines whether there exists a perfect
decision set of a given size N . In order to find a decision set of minimum size, the SAT
model is iteratively solved while increasing N by 1 until it is satisfied. All rules are encoded
as a single sequence of feature literals, and a class literal ends each rule. The model also
keeps track of which examples are valid (agree) with previous literals in the rule, and checks
whether the examples that reach the end of a rule (i.e. a leaf node) match the correct class.
The Boolean variables used in the encoding are described below:

• sjr: node j is a literal on feature fr ∈ F ∪ C;

• tj : truth value of the literal for node j;

• vij : example ei ∈ E is valid at node j;

The model is as follows:
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• Only one feature (or a class feature) is used in a node:

∀j∈[N ]

∑
r∈[K+|C|]

sjr = 1 (1)

• The last node is a leaf: ∨
c∈C

sNc (2)

• All examples are valid at the first node:

∀i∈[M ] vi1 (3)

• An example ei is valid at node j + 1 iff j is a leaf node, or ei is valid at node j and ei
and node j agrees on the value of the feature sjr selected for that node:

∀i∈[M ]∀j∈[N−1] vij+1 ↔ (
∨
c∈C

sjc) ∨ (vij ∧
∨
r∈[K]

(sjr ∧ (tj = πi[r]))) (4)

• If example ei is valid at a leaf node j, it should agree on the class feature:

∀i∈[M ]∀j∈[N ] (sjc ∧ vij)→ (tj = ci) C = {c}

∀i∈[M ]∀j∈[N ]∀c∈C (sjc ∧ vij)→ ci |C| ≥ 3
(5)

• When there are 3 or more classes we restrict leaf nodes to only consider true examples
of the class:

∀j∈[N ]∀c∈C sjc → tj |C| ≥ 3 (6)

• For every example there should be at least one leaf node where it is valid:

∀i∈[M ]

∨
j∈[N ]

((
∨
c∈C

sjc) ∧ vij) (7)

The model described above represents a non-clausal Boolean formula, which can be
clausified with the utilization of auxiliary variables (Tseitin, 1968). Also note that any of
the known cardinality encodings can be used to denote the sum in constraint (1) (Biere
et al., 2009, Chapter 2) (also see (Aśın, Nieuwenhuis, Oliveras, & Rodŕıguez-Carbonell,
2009; Bailleux & Boufkhad, 2003; Batcher, 1968; Sinz, 2005)). Finally, the size (in terms
of the number of literals) of the suggested SAT encoding is O(N ×M ×K), which results
from constraint (4).

Example 2. Consider a solution for 11 nodes for the dataset of Example 1. The sequence
of nodes that represent the rules are shown below:

1 2 3 4 5

A // H ¬A // ¬C // ¬H
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6 7 8 9 10 11

¬B // C // H ¬A // B // ¬H
The interesting (true) decisions for each node are given in the following table

Node j 1 2 3 4 5 6 7 8 9 10 11

sjr s1A s2H s3A s4C s5H s6B s7C s8H s9A s10B s11H

tj 1 1 0 0 0 0 1 1 0 1 0

vij v11 v12 v13 v24 v75 v16 v17 v18 v19 v210 v311
... v22

...
... v85

... v57 v58
...

... v411

v81 v83 v84 v86
... v68 v89 v810

v87 v411

The selected variable at the end of each rule is class H. Note that all examples are valid at
the start node in each rule, and each feature literal leads to the reduction of the valid set for
the next node. In each leaf node j, the valid instances of the correct class are determined
by the truth value tj of that node.

The iterative SAT model tries to compute a perfect decision set of size N . If this fails,
we increase the predefined size by 1 and resolve, until a solution is found or resource limits
(typically computation time) are reached. A potential question is why binary search is not
used instead. The issue is that the complexity of deciding satisfiability of the described
model grows (potentially) exponentially with N , and therefore, predefining a large N can
lead to the failure of solving the whole problem.

Example 3. Consider the data shown in Example 1. The iterative SAT model initially tries
to find a decision set of size 1, which fails, then of size 2, etc. until the model reaches size
11 where it can determine the perfect decision set: A⇒ H, ¬A∧¬C ⇒ ¬H, ¬B ∧C ⇒ H,
¬A ∧B ⇒ ¬H of size 11 by finding the model shown in Example 2.

4.2 MaxSAT Model for Perfect Decision Sets

Instead of using the proposed iterative SAT-based model, which iterates over varying size
N of the perfect decision set, we can modify the model to determine a perfect decision set
of size at most N , and formulate a MaxSAT problem such that the number of nodes used
can be minimized. Let us add a flag variable uj for every available node. Variable uj is true
whenever the node j is unused and false otherwise. The model is as follows:

• A node either uses a feature or is unused:

∀j∈[N ] uj +
∑

r∈[K+|C|]
sjr = 1 (8)

• If a node j is unused then so are all the following nodes

∀j∈[N−1] uj → uj+1 (9)
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• The last used node is a leaf:

∀j∈[N−1] uj+1 → uj ∨
∨
c∈C

sjc (10)

uN ∨
∨
c∈C

sNc (11)

The constraints above together with constraints (3), (4), (5), (6), and (7) make up the
hard clauses of the MaxSAT formula, i.e. every clause of them must be satisfied. The model
maximizes

∑
j∈[N ] uj , which is the representation of the list of unit soft clauses of the form

(uj , 1).

In the worst case, the model is still run iteratively. We first propose an upper bound N
on the size of the decision set. The model tries to search for a decision set of size no more
than N . If this fails, we need to increase N by some number (say 10) and retry, until the
solution is found or resource limits are reached.

Example 4. Revisiting the solution illustrated in Example 1 when N is set to 13 we find
the solution shown in Example 2 extended in which the last two nodes are unused: u12 =
u13 = true. The last used node 11 is clearly a leaf. Note that truth value (tj) and validity
(vij) variables are irrelevant to unused nodes j.

4.3 MaxSAT Model for Sparse Decision Sets

We can extend the MaxSAT model to look for sparse decision sets, which trade off training
accuracy for model size, rather than perfect decision sets, which aim at the highest possible
training accuracy. The objective to minimize is the total number of misclassifications (in-
cluding non-classifications where no prediction information is provided for the example by
any decision rule) plus the product of the number of nodes in a decision set and a discount
factor Λ, which records that Λ fewer misclassifications are worth the addition of one node
to the decision set. Typically we consider Λ = dλMe where λ is the regularized penalty of
nodes in terms of misclassifications.

We introduce variable mi to represent that example i ∈ [M ] is misclassified. Consider
the following constraints:

• If example ei is valid at a leaf node j then ei agrees on the class feature or ei is
misclassified:

∀i∈[M ]∀j∈[N ] (sjc ∧ vij)→ (tj = ci ∨mi) C = {c}

∀i∈[M ]∀j∈[N ]∀c∈C (sjc ∧ vij)→ (ci ∨mi) |C| ≥ 3
(12)

• For every example there should be at least one leaf literal where it is valid or the
example is misclassified (actually non-classified):

∀i∈[M ] mi ∨
∨
j∈[N ]

(
∨
c∈C

sjc ∧ vij) (13)
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together with all the MaxSAT constraints from Section 4.2 except constraints (5) and (7).
The objective function of the proposed model is∑

i∈[M ]

mi +
∑
j∈[N ]

Λ(1− uj) +NΛ

represented as soft clauses (¬mi, 1), i ∈ [M ], and (uj ,Λ), j ∈ [N ].
Note that the value of regularized penalty λ is critical. As the value of λ becomes higher,

the emphasis of the problem shifts more to “sparsification” of the target decision set, rather
than its accuracy. In other words, higher values of λ (and hence of Λ as well) contribute to
simpler decision sets where its accuracy on training examples is sacrificed.

4.4 Separated Models for Decision Sets

A convenient feature of optimal decision sets is the following: the union of minimal decision
sets for each c ∈ C that correctly classifies all examples of class c and does not misclassify
any examples not of class c as class c, is a minimal target decision set for the whole problem.

That means we can compute perfect decision sets for |C| classes by separately computing
|C| perfect decision sets, one for each class. The union of these |C| models, which we call
“separated model”, is clearly not much smaller than the complete model, as each separated
model still includes constraint (4) for each example leading to the size O(N ×M ×K). The
advantage arises because the minimal size required for each separated model is smaller.

Example 5. Consider the dataset shown in Example 1. We can iteratively compute decision
rules for the positive examples: A⇒ H, ¬B ∧C ⇒ H of size 5, and the negative examples:
¬A ∧ ¬C ⇒ ¬H, ¬A ∧ B ⇒ ¬H of size 6. This is faster than solving the problems
together where the complete model iterates from size 1 to size 11 to ultimately find the
same solution.

For sparse decision sets, the definition of misclassifications needs to be modified in order
that a separated solution is available. Suppose that an example ei ∈ E is of class ci ∈ C
then the number of misclassifications of example ei is counted as follows:

• If example ei is not classified as class ci, then this counts as one misclassification.

• If example ei is classified as class cj ∈ C, cj 6= ci that counts as one misclassification
per class.

With the modified definition of misclassification, we can construct minimal decision sets
per class separately and then join them together.

5. Decision List Encoding

We can modify the SAT encoding for decision sets described in Section 4 fairly naturally to
instead define decision lists.

5.1 MaxSAT Model for Perfect Decision Lists

The MaxSAT model introduced in Section 4.2 determines whether there exists a perfect
decision set of at most a given size N . We can modify this to determine a perfect decision
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list of size at most N by keeping track of which items have previously been classified by
a previous rule, and preventing them from being considered (in)valid in later rules. The
sequence of literals is viewed as a path graph, with one feature literal per node.

We introduce a new variable nij to represent that example ei ∈ E is not previously
classified by any nodes before j.

The model is as follows:

• All examples are not previously classified at the first node:

∀i∈[M ] ni1 (14)

• An example ei is previously unclassified at node j+1 iff it was previously unclassified,
and either j is not a leaf node or it was invalid at the previous leaf node (so not
classified by the rule that finished there):

∀i∈[M ]∀j∈[N−1] nij+1 ↔ nij ∧ ((
∧
c∈C
¬sjc) ∨ ¬vij) (15)

• An example ei is valid at node j+1 iff j is a leaf node and it was previously unclassified,
or ei is valid at node j and ei and node j agree on the value of the feature sjr selected
for that node:

∀i∈[M ]∀j∈[N−1]

vij+1 ↔ (((
∨
c∈C sjc) ∧ nij+1) ∨

(vij ∧
∨
r∈[K] (sjr ∧ (tj = πi[r]))))

(16)

The constraints above together with constraints (3), and (5)–(10) make up the hard
constraints of the MaxSAT model. The model maximizes

∑
j∈[N ] uj , which can be trivially

represented as a list of unit soft clauses of the form (uj , 1). The size (in terms of the
number of literals) of the proposed SAT encoding is O(N ×M × K), which results from
constraints (15) and (16).

The differences between the above model and the MaxSAT model of decision sets is the
addition of the nij variables to track which items have been previously classified, and their
use in constraint (16), as well as the rules to compute them given in constraints (14) and
(15).

Example 6. Consider a solution for 7 nodes for the data of Example 1. The representation
of the decision list is shown below:

1 2 3 4 5 6 7

A // H // B // ¬H // C // H // ¬H

The interesting (true) decisions for each node are as follows:
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Node j 1 2 3 4 5 6 7

sjr s1A s2H s3B s4H s5V s6H s7H

tj 1 1 1 0 1 1 0

vij v11 v12 v33 v34 v55 v56 v77
... v22

... v44
... v66 v87

v81 v83 v85

nij n11 n12 n33 n34 n55 n56 n77
...

...
...

...
...

... n87

n81 n82 n83 n84 n85 n86

The selected variable at the end of each rule is class H. Note that at the start and
after each leaf node all previously unclassified examples are valid, and each feature literal
triggers the decrease of the valid set for the next node. The valid instances of the correct
class are determined by the truth value tj in each leaf node j.

The MaxSAT model tries to find a decision list of size at most N . If this fails, we can
increase N by some amount and resolve, until either resource limits (typically computation
time) are reached or a solution is found.

5.2 MaxSAT Model for Sparse Decision Lists

We modify the MaxSAT model for sparse decision sets introduced in Section 4.3 to look
for sparse decision lists that trade off accuracy for size. The same objective function and
discount factor Λ are used in the model where Λ fewer misclassifications are worth the
addition of one node to the decision list.

The hard part of the model consists of the constraints (12) and (13) with all the hard
constraints of the model for perfect decision lists except constraints (5) and (7). The
objective function is ∑

i∈[M ]

mi +
∑
j∈[N ]

Λ(1− uj) +NΛ

represented as soft clauses (¬mi, 1), i ∈ [M ], and (uj ,Λ), j ∈ [N ].

5.3 Separated Models for Decision Lists

Separated models for decision sets have been introduced in Section 4.4 where the size of the
union of |C| models is the same as the size of the complete model.

For decision lists this property no longer holds. If we compile decision lists separately for
each class, we must still order the decision lists of different classes. Therefore, no optimal
decision list might be expressed as rules for one class, followed by another class.

Example 7. Consider the dataset of Example 1. Recall that an optimal decision list shown
in Example 1 has 7 literals.
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An optimal decision list that is separated in class order is

if A then H
else if ¬B ∧ C then H
else if B then ¬H
else if true then ¬H

requiring one more literal.

Given that separated models are important for scaling this approach to larger problems,
we need to consider approaches for defining decision lists in a separated form. We consider
a number of different approaches:

fixed σ Given a permutation σ of classes, find an optimal decision list for the first class
in σ, then make an optimal decision list for the second class ignoring items already
classified by the decision list for the first class. Then consider the third class, etc.

greedy Make an optimal decision list for each class independently: choose the one that is
best under some metric. Fix its solution as the first part of the decision list. Calculate
I ′ as the items not classified by this decision list. Make an optimal decision list for
each remaining class independently. Again, choose the best one and fix it. Continue
until all classes are considered, or I ′ becomes empty.

For the fixed permutation case, one can try all possible permutations, if there are not
too many, e.g. |C| ≤ 3, or use a heuristic to choose a permutation σ. One heuristic we
consider is sorting the classes by increasing/decreasing number of their respective items
in the training set. Alternatively, we consider ordering the classes greedily based on the
post-hoc analysis of the accuracy or cost of individual class representations obtained on the

training data. Here, training accuracy for the representation of class c is 1−
∑

i∈[M ],ci=cmi

|{ei∈E,ci=c}|

while the cost of representation of class c is assumed to be N −∑
j∈[N ] uj +

⌈∑
i∈[M ]mi

Λ

⌉
.

Note that for separated sparse models, the objective is effectively different. Using the
same objective for each class separately means that we count a misclassification once for
every class it is detected by. This is arguably more informative. As we cannot guarantee
the same optimal solutions anyway (due to order restrictions), this seems acceptable.

6. Explanation Size

Given two different ML models, we can ask which model gives the smallest explanation on a
particular data instance. By optimizing the size of a decision list or decision set, we believe
the size of the explanations it creates will be small, but this is not completely accurate. The
explanation size of an ML model can be far smaller than the whole model. The implicit
notion of explanation size we are trying to capture is, if a customer/user were to ask why
our model made a decision for their case, how would we explain that decision? Note that
we also define explanation size for the cases where a decision set makes no decision, either
since no rule fires, or two contradictory rules fire. We define the explanation size of a model
φ̂ on an example instance e as follows (note that alternative definitions of explanation size
may exist, both for decision sets and decision lists).
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If φ̂ is a decision set and the rules in φ̂ that fire on example e are {if πi then ci},
∀i ∈ [n], n ≤ N = |φ̂|, then

• if all the classes c1, . . . , cn agree, i.e. ci = c′, ∀i ∈ [n], c′ ∈ C, then the explanation size

for example e is
∑n

i=1 |if πi then ci|
n , that is, the average of the rules, any of which could

explain the example.

• if not all classes agree for e then the explanation size is the sum of averages of the
rules for all the conflicting classes predicted for e; wlog. assume that ci = c′, c′ ∈ C,
1 ≤ i ≤ k < n and cj = c′′, c′′ ∈ C, k + 1 ≤ j ≤ n, then the explanation size for

example e is
∑k

i=1 |if πi then ci|
k +

∑n
j=k+1 |if πj then cj |

n−k ; similar reasoning can be applied
to situations of more than two conflicting classes.

• if no rule fires then the explanation size is |φ̂|, i.e. we need the whole decision set to
explain why e is not classified.

If φ̂ is a decision list and if πj then cj is the first rule in φ̂ that fires on example e then

• the explanation size is
∑j

i=1 |πi| + 1 as we need to explain why none of the previous
rules fired, and why rule j did.

• if no rule fires for e then the explanation size is |φ̂|, i.e. we need the whole model to
explain why e is not classified. Note that in practice this does not occur since the last
rule will be a default rule, and all examples will be classified.

Note that it is easy to extend the notion of explanation size to decision trees (as the
path from root to leaf) though decision tree models are not considered in this paper.

7. Experimental Results

This section describes the results of experimental assessment of the proposed approach to
computing optimal decision sets and decision lists. Firstly, we discuss the comparison be-
tween the decision set approaches and state-of-the-art decision sets in terms of performance,
accuracy and model size. Afterwards, we compare the proposed approach to decision lists
with the SAT-based decision sets as well as the only previous approach to optimal sparse
decision lists we are aware of (Angelino et al., 2017; Wang et al., 2017).

Experimental results are obtained on the StarExec cluster9 (Stump, Sutcliffe, & Tinelli,
2014), each computing node of which uses an Intel Xeon E5-2609 2.40GHz CPU with
128GByte of RAM, running CentOS 7.7. The time limit and memory limit used per process
are 1800 seconds and 16 GB.

For the evaluation, we use the 71 datasets from the UCI Machine Learning Reposi-
tory (Dua & Graff, 2017) and Penn Machine learning Benchmarks (Olson, La Cava, Orze-
chowski, Urbanowicz, & Moore, 2017). We also use 5-fold cross validation, which results in
355 pairs of training and test data split with the ratio 80% and 20%, respectively. Finally,
feature domains are quantized into 2, 3, and 4 intervals and then one-hot encoded (Pe-
dregosa et al., 2011). The number of one-hot encoded features (training instances, resp.)

9. https://www.starexec.org/
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per dataset in the benchmark suite varies from 3 to 384 (from 14 to 67557, resp.). The total
number of benchmark datasets is 1065 (71× 5× 3).

All the proposed models are implemented as collections of Python scripts10 and solving
is done by instrumenting incremental calls to SAT solver Glucose 3 (Audemard, Lagniez,
& Simon, 2013) and MaxSAT solver RC2-B (Ignatiev, Morgado, & Marques-Silva, 2018,
2019a).

7.1 Experimental Results for Decision Sets

Implementation. All models in the implementation target independent computation of
each class11, as described in Section 4.4. The iterative SAT and MaxSAT models targeting
perfect decision sets are referred to as opt and mopt. To explain the benefits of separated
models over the models aggregating all classes, a complete SAT model is also included,
which is referred to as opt∪. Lastly, some variants of the MaxSAT model for sparse decision
sets named sp[λi] are assessed with three different values of regularized penalty: λ1 = 0.005,
λ2 = 0.05, and λ3 = 0.5.

Competitors. MinDS2 and MinDS?2 (Ignatiev et al., 2018) for perfect decision sets re-
ferred to as mds2 and mds?2 are considered as the competitors in the implementation. The
former algorithm minimized the number of rules, whereas the latter does lexicographic
optimization, i.e. it minimizes the number of rules first and the total number of literals
afterwards. In addition, we modified MinDS to be able to compute sparse decision sets
similar to what is described in Section 4.3. The implementation is called mds2[ρi], tested
with three values of regularized penalty ρ1 = 0.05, ρ2 = 0.1, and ρ3 = 0.5. Note that
ρi 6= λi, i ∈ [3], as the two models use different measures where MinDS targets rules but
the other one targets literals. To consider fair comparison of performance between the new
model sp and of the sparse variant of mds?2, we provide the configuration of sp[ρi] with
ρi = λi

K , where K refers to the number of features in the dataset. In other words, a rule is
considered equivalent to K literals.

Apart from MinDS, some state-of-the-art algorithms were also considered, including a
MaxSAT-based method IMLI (Ghosh & Meel, 2019) (i.e. the direct successor of MLIC
(Malioutov & Meel, 2018)) as well as two heuristic approaches CN2 (Clark & Niblett, 1989;
Clark & Boswell, 1991), and RIPPER (Cohen, 1995). Note that IMLI and RIPPER compute
only one class given the training data12. Both of these competitors incorporate a default
rule which classifies a class (1) different from the constructed one and (2) represented by the
majority of the training examples. Finally, IMLI aims to compute a target decision set given
the number of rules k, which varies from 1 to 16. The best results (both regarding accuracy
and performance) are demonstrated by the configuration aiming at the smallest possible
number of rules, i.e. k = 1, while the worst results were shown for k = 16. Therefore, only
the extreme values of k are used to compare the results, represented by imli1 and imli16.

10. https://github.com/alexeyignatiev/minds/

https://github.com/jinqiang-yu/dlsat/

11. The prototype adapts all the developed models to the case of multiple classes, which is motivated by the
practical importance of non-binary classification.

12. The implementation of RIPPER considered in our experimental evaluation is taken from https:

//github.com/imoscovitz/wittgenstein. A reader may find other implementations having different
capabilities.
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Figure 1: Performance of all decision set competitors and the quality of solutions in terms
of decision set size.

Performance. The performance of these models is shown in Figure 1a using a cactus
plot. The plot shows for each method how many instances were solved by the method
within each CPU time. As can be observed, the best results are demonstrated by ripper,
which is able to compute 1048 selected datasets within the 1800s time limit. The second
and third positions are occupied by the proposed MaxSAT models for sparse decision sets
sp[λ3] and mds?2[ρ3], which can successfully cope with 1024 and 1000 datasets respectively.
cn2 takes the fourth place with 975 datasets solved. imli1 is the best configuration of imli,
finishing with 802 instances solved, whereas the worst configuration imli16 computes only
620 datasets. Finally, the worst performance is shown by the approaches targeting perfectly
accurate decision sets opt, mopt, and opt∪ as well as the MaxSAT approaches for sparse
decision sets with low regularized penalty sp[ρ1] and sp[ρ2]. For example, opt∪ solves only
196 datasets.

Test Accuracy. The calculation of accuracy is as follows: (1) if a rule of a wrong class
“covers” an instance, the instance is considered misclassified (though there are other rules
of the correct class covering this instance); (2) if an instance is not covered by any rule of a
correct class, the instance is considered misclassified. Afterwards, the accuracy is calculated
as M−E

M × 100%, where M is the total number of instances and E is the total number of
misclassified instances.

Confirmed by Figure 2b which depicts the accuracy among all the approaches for the
datasets solved by all these approaches, perfect decision sets tend to have highest accuracy
once they are computed. As can be observed, the virtual perfect approach, which repre-
sents all the tools aiming at perfect decision sets, i.e. opt, mopt, opt∪, mds2, and mds?2,
outperforms the other approaches regarding testing accuracy. The average testing accuracy
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Figure 2: Accuracy of the considered decision set approaches.

on these solved datasets is 85.89%13. Conversely, cn2 (43.73%) is the worst in terms of
testing accuracy. Also, the average accuracy of mds?2[ρ3], sp[λ3], imli1, imli16, and ripper is
61.71%, 67.42%, 76.06%, 77.42%, and 80.50% respectively.

The result changes significantly if we compare testing accuracy on the entire set of bench-
mark datasets, demonstrated in Figure 2a. Here, we assume that the accuracy for a dataset
is 0% if a tool fails to train a model for the dataset within the given time limit. The figure
shows that ripper (68.13% on average) achieves the best accuracy, followed by the sparse
decision sets computed by mds?2[ρ3] and sp[λ3] (61.23% and 60.91%, respectively). The
average accuracy of imli1 and imli16 is 50.66% and 28.26%, whereas the average accuracy
achieved by cn2 is 47.49%.

Decision Set Size Figure 1b illustrates the size in terms of the number of literals in a
decision set model. The figure demonstrates that the winner is sp[λ3]. The decision sets of
sp[λ3] make up only one literal14 for more than 400 datasets. For another bunch of around
400 instances, the solutions of sp[λ3] consist of 3 literals. Computing small solutions is a
noticeable achievement as sp[λ3] also achieves overall high accuracy. The average size of
decision sets computed by sp[λ3] is 4.18. Note that imli1 occupies the second place with
5.57 literals per dataset though its solution always consists of only one rule. In comparison
to this, the average solution size of cn2 is 598.05. Finally, the result of imli16 is 46.29, while
the average solution of ripper has 35.14 literals.

13. This average value is the highest possible accuracy that can be achieved on these datasets whatever
machine learning model is considered.

14. In a unit-size decision set, the literal is meant to assign a constant class. This can be seen as applying a
default rule.
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Figure 3: Comparison of sp[λ3] and ripper.
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Figure 4: Comparison of sp[λ3] and imli1.

As expected, perfect decision sets, i.e. those constructed by opt, mopt, opt∪, as well as
mds2, and mds?2, tend to be larger in general. It should also be noted that the mds?2 obtains
perfect decision sets of size 40.70, whereas the sparse version gets 14.52 literals per solution.

A few more details. The comparison of sp[λ3] with ripper and imli1 is depicted in
Figure 3 and Figure 4 using scatter plots that plot the compared statistic of each method
on the two axes. Note that the axes are log scaled since the differences in the methods
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Figure 5: Performance and accuracy of perfect decision list and decision set models.

can be significant. All the results in these figures are obtained for the datasets solvable
by each pair of contestants. As can be observed in Figure 4a and Figure 4b, imli1 and
sp[λ3] are comparable with respect to size and accuracy. Nevertheless, as imli1 constructs
decision sets representing only one class and it considerably underperforms sp[λ3], the latter
method is considered a better alternative. Even if the accuracy of ripper is comparable with
the accuracy of sp[λ3] (see Figure 3b) and the former approach achieves the best overall
performance, the size of decision sets computed by ripper tends to be significantly larger
than the one of its opponent (see Figure 3a).

Finally, a drawback of both RIPPER and IMLI is that they construct a representation
for one class only. Therefore, a concise explanation for the instances of non-computed classes
cannot be provided by the two approaches. This is in clear contrast with our approaches,
which offer users a concise representation of every class in the dataset.

7.2 Experimental Results for Decision Lists

Implementation The complete MaxSAT model is referred to as pdl∪. As was shown
in Section 5.3, separated models do not guarantee optimality of the size of decision lists,
and so we tested various ordering of the classes when computing separated decision lists.
Concretely, pdli↑ and pdli↓ refer to the separated models that order classes by the increas-
ing/decreasing number of training data in the classes. Sparse models are referred to as
sdl[λ]◦, where λ is a regularized penalty and ordering ◦ is from {∪, i ↓, i ↑, a ↓, a ↑, c ↓
, c ↑} meaning that decision list computation is all classes at once, or each class com-
puted separately with the classes being ordered based on the increasing/decreasing num-
ber/accuracy/cost of training data in the classes, as defined in Section 5.3.
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Figure 6: Decision set/list size and average explanation size of perfect decision list and
decision set models.

7.2.1 Perfect Models

We compare our prototype against state-of-the-art perfect decision set methods (Ignatiev
et al., 2018) and the perfect decision set model described in Section 4.2, namely mds2,
mds?2 and opt. While mds2 generates a decision set with the smallest number of rules
and opt minimizes the number of literals, mds?2 does rule minimization followed by literal
minimization. The comparison of perfect models is illustrated in Figure 5, Figure 6, and
Figure 7.

Performance. The performance of the perfect models is shown in Figure 5a. As can be
seen, mds2 outperforms all the other rivals and trains 579 models. This should not come
as a surprise since mds2 minimizes the number of rules. It is followed by mds?2, which
sequentially applies rule and literal minimization – mds?2 can solve 399 benchmarks. The
best performing decision list model pdli↑ comes third with 369 datasets handled successfully.
The optimal decision set approach opt solves 350 instances. Finally, pdli↓ and pdl∪ can train
329 and 261 decision lists respectively.

Test Accuracy. Test accuracy computed for the benchmarks solved by all the competitors
is shown in the cactus plot of Figure 5b. Concretely, the plot depicts the value of test error
in percent. On average, all the approaches perform similarly here and have test accuracy
≈ 80%. This is not surprising as all of them target perfectly accurate models.

Decision Set/List Size. The size calculated as the total number of literals in the decision
set/list model is shown in Figure 6a. (Note that the plot is generated for the datasets
successfully handled by all the shown competitors.) Observe that optimal perfect decision
lists pdl∪ are the smallest among all the approaches with the average size being 9.9 per
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Figure 7: Comparison of pdli↑ and opt in terms of decision set/list size and average expla-
nation size.

model. The second best model is pdli↑ with 11.3 literals per model. Note that the smallest
size decision sets obtained by opt have 20.6 literals on average. The largest models are of
mds2 with 29.6 literals per model on average. The pairwise comparison of decision set/list
size for opt and pdli↑ is detailed in the scatter plot of Figure 7a, which clearly demonstrates
that perfect smallest size decision sets are usually larger than decision lists even when these
are not guaranteed to be smallest in size.

Average Explanation Size. Although decision lists are smaller, the advantage of perfect
decision sets is clearly the average explanation size per instance, which is calculated as
described in Section 6. This data is shown in Figure 6b. For instance, it takes 3.3 literals
on average to explain a prediction of decision sets produced by opt. For mds?2 and mds2

the numbers are 3.3 and 4.9, respectively. Explanations for decision lists are larger; the
best result is shown by pdl∪, which has 6.9 literals per explanation. The best performing
decision list model pdli↑ has 9.6 literals per explanation. The detailed comparison of the
average explanation size for opt and pdli↑ is shown in the scatter plot of Figure 7b.

7.2.2 Sparse Models

The second part of our decision list evaluation compares sparse models. Here, the proposed
approach is compared against sparse versions of decision sets sp and mds2 of Section 4.2
and optimal sparse decision lists produced by corels (Angelino et al., 2017; Wang et al.,
2017).15 Although we tested 3 values for regularized penalty λ ∈ {0.005, 0.05, 0.5}, we
report the results only for λ2 = 0.05. As Section 7.1 showed, the best trade-off for sparse

15. There is a implementation of the RIPPER algorithm referred to as JRip that produces decision lists.
However, we were unable to run it in our experimental environment. Since RIPPER is known to be more
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Figure 8: Performance and decision set/list size of sparse models.

decision sets was obtained for λ2 = 0.05 and λ3 = 0.5. However, decision lists obtained
for λ3 are usually too sparse as they end up having a single rule predicting a constant
class. Therefore, hereinafter, the results are reported for configurations sdl[λ2]∗ as well as
for sp[λ2], mds2[ρ1], mds?2[ρ1], and corels[λ2]. (Note that the value of regularized penalty
ρ1 = 0.05 is unchanged, also taken from Section 7.1. As mds2 and mds?2 minimize the
number of rules, regularized penalty ρ1 is applied wrt. the number of rules, which contrasts
λ2 applied to the number of literals). The results are shown in Figure 8, Figure 9, and
Figure 10.

Performance. As can be observed in Figure 8a, corelsλ2 is the fastest among the ap-
proaches for sparse models. It solves 1016 benchmarks. Sparse decision sets can be trained
by sp[λ2] for 898 datasets while decision lists can be trained by sdl[λ2]i↑ for 827 of them.
Observe that class ordering i ↑ based on the increasing number of instances per class out-
performs the other configurations of sdl[λ2], which can tackle ≈ 800 datasets each. The
decision set competitors mds2[λ2] and mds?2[λ2] solve 772 benchmarks. Finally, aggregated
computation of smallest decision lists of sdl[λ2]∪ handles 688 datasets.

Test Accuracy. Although corels[λ2] outperforms its rivals in performance, the accuracy
of its decision lists is not the best. The scatter plot in Figure 9a depicts the value of
test error e = 100% − a, where a is test accuracy, for corels[λ2] and sdl[λ2]i↑. Observe
that in many cases the accuracy of sdl[λ2]i↑ is significantly higher than of corels[λ2]: the
average accuracy of corels[λ2] is 40.2% while the average accuracy of sdl[λ2]i↑ is 69.9%.
This clearly suggests that the sparsity measure used in our work enables us to train more

accurate (but less concise) than corels (Angelino et al., 2017; Wang et al., 2017), it not clear what the
comparison of our approach against RIPPER would look like.
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Figure 9: Test error comparison of sdl[λ2]i↑, corels[λ2], and sp[λ2].

accurate decision lists. Also, as shown in Figure 9b, the accuracy of sdl[λ2]i↑ is on a par
with the accuracy of sparse decision sets of sp[λ2], which on average equals 67.6%.

Decision Set/List Size. As detailed in Figure 8b, the smallest models are obtained
with sparse decision lists of corels[λ2] and sdl[λ2]∗. The average number of literals in the
lists produced by corels[λ2], sdl[λ2]∪, and sdl[λ2]i↑ is 2.7, 2.3, and 2.4, respectively (these
numbers are calculated across the instances solved by the corresponding tools). Similar
results are demonstrated by the other configurations of sdl[λ2]∗. In contrast, the average size
of sparse decision sets of sp[λ2], mds2[λ2], and mds?2[λ2] is 6.9, 22.5, and 17.9, respectively.

Average Explanation Size. Figure 10a and Figure 10b provide a comparison of sdl[λ2]i↑
against corels[λ2] and sp[λ2] in terms of the average explanation size. In contrast to the
case of perfect models, an average explanation for decision lists of sdl[λ2]i↑ has 2.1 literals
while explanations of sparse decision sets of sp[λ2] are of size 3.4. This suggests that sparse
decision lists not only are smaller than sparse decision sets but they also provide a user
with explanations that are more succinct. The average explanation size of the decision lists
of corels[λ2] is 2.3. (The average numbers shown here are collected across all benchmarks
solved by the corresponding tools).

8. Conclusion

In this paper, we developed the first approach to computing decision sets and decision lists
where the total number of literals is minimized. The method can construct perfect decision
sets and decision lists, i.e. those that perfectly classify the training instances; or sparse
decision sets and lists, i.e. those that trade off model accuracy on training instances for
size. The experimental results demonstrate that sparse models can outperform perfectly
accurate models due to their (1) high accuracy overall and (2) better scalability. Second, the
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size.

regularized penalty substantially influences the efficiency of sparse decision sets and lists
as these models are harder to compute but more accurate when the regularized penalty
is smaller. This provides a reasonable trade-off in practice. Points 1 and 2 hold for the
proposed models in this paper and also for the sparse variants of prior work aiming to
minimize the number of rules (Ignatiev et al., 2018).

While existing heuristic approaches like RIPPER might scale significantly well and com-
pute accurate decision sets, their solutions are often much larger than the sparse decision
sets proposed in this paper, which causes them to be less explainable. The proposed method
for sparse decision sets improves upon the previous state-of-the-art algorithms represented
by prior logic-based approaches (Ignatiev et al., 2018; Malioutov & Meel, 2018; Ghosh &
Meel, 2019) as well as by efficient heuristic methods (Cohen, 1995; Clark & Niblett, 1989;
Clark & Boswell, 1991).

Although existing bespoke methods for optimal sparse decision lists are considerably
more scalable, interestingly the accuracy of the models they construct are lower, probably
because the size measure we use is more fine grained. There is also a question of how these
methods scale with number of features. Finally, we provide the first comparison of decision
sets and lists in terms of model size and explanation size. For perfect models, decision sets
are preferable, but surprisingly this reverses for sparse models.

There is an interesting direction to extend this work. There is considerable symmetry in
the proposed models, and while we tried adding symmetry breaking constraints to improve
the models, what we tried did not make a significant difference. This deserves further
exploration.
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