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Abstract

The rise of AI methods to make predictions and decisions has
led to a pressing need for more explainable artificial intelli-
gence (XAI) methods. One common approach for XAI is to
produce a post-hoc explanation, explaining why a black box
ML model made a certain prediction. Formal approaches to
post-hoc explanations provide succinct reasons for why a pre-
diction was made, as well as why not another prediction was
made. But these approaches assume that features are indepen-
dent and uniformly distributed. While this means that “why”
explanations are correct, they may be longer than required.
It also means the “why not” explanations may be suspect as
the counterexamples they rely on may not be meaningful. In
this paper, we show how one can apply background knowl-
edge to give more succinct “why” formal explanations, that
are presumably easier to interpret by humans, and give more
accurate “why not” explanations. Furthermore, we also show
how to use existing rule induction techniques to efficiently
extract background information from a dataset, and also how
to report which background information was used to make an
explanation, allowing a human to examine it if they doubt the
correctness of the explanation.

1 Introduction
Recent years have witnessed rapid advances in Artificial In-
telligence (AI) and Machine Learning (ML) algorithms rev-
olutionizing all aspects of human lives (LeCun, Bengio, and
Hinton 2015; ACM 2018). An ever growing range of practi-
cal applications of AI and ML, on the one hand, and a num-
ber of critical issues observed in modern AI systems (e.g.
decision bias (Angwin et al. 2016) and brittleness (Szegedy
et al. 2014)), on the other hand, gave rise to the quickly ad-
vancing area of theory and practice of Explainable AI (XAI).

Several major approaches to XAI have been proposed in
the recent past. Besides tackling XAI through computing in-
terpretable ML models directly (Rudin 2019), or through
the use of interpretable models for approximating complex
black-box ML models (Ribeiro, Singh, and Guestrin 2016),
the most prominent approach to XAI is to compute post-
hoc explanations to ML predictions on demand (Lundberg
and Lee 2017; Ribeiro, Singh, and Guestrin 2018). Further-
more, prior work distinguishes post-hoc explanations an-
swering a “why?” question and explanations targeting a

“why not?” question (Miller 2019).1 While heuristic ap-
proaches to post-hoc explainability prevail (Ribeiro, Singh,
and Guestrin 2016; Lundberg and Lee 2017; Ribeiro, Singh,
and Guestrin 2018), they are known to suffer from a number
of fundamental explanation quality issues, including the ex-
istence of out-of-distribution attacks (Slack et al. 2020). A
promising alternative to heuristic approaches is formal ex-
plainability where explanations are computed as prime im-
plicants of the decision function associated with ML pre-
dictions (Shih, Choi, and Darwiche 2018; Ignatiev, Naro-
dytska, and Marques-Silva 2019; Darwiche and Hirth 2020;
Marques-Silva and Ignatiev 2022).

Although provably correct and minimal, formal explana-
tions have a few limitations. In order to provide provable
correctness guarantees that a subset of features is sufficient
for an ML prediction, formal approaches have to take into
account the complete feature space assuming that the fea-
tures are independent and uniformly distributed (Wäldchen
et al. 2021). This makes a formal reasoner check all the com-
binations of feature values, including those that realistically
can never appear in practice. This issue is caused by the
inability of modern (both formal and heuristic2) explanation
approaches to account for background knowledge associated
with the problem domain of the target dataset. It results in
formal explanations being unnecessarily long, which makes
them hard for a human decision maker to interpret. Clearly,
the issue restricts the practical applicability of the state-of-
the-art explanation approaches.

Motivated by this limitation, our work focuses on com-
puting both abductive and contrastive formal explanations
and makes the following contributions with respect to the
state of the art. First, given a training dataset, an efficient
generic approach to extracting background knowledge in the
form of highly accurate if-then rules is proposed. Following
recent work on using constraints in compilation-based for-
mal explainability (Gorji and Rubin 2021), accurate back-
ground knowledge is argued to be the key to good quality ex-
planations. The approach builds on a recent formal method

1Hereinafter and following prior work (Miller 2019; Ignatiev
et al. 2020), “why?” explanations are referred to as abductive while
“why not?” explanations are called contrastive.

2The lack of background knowledge support pertains to heuris-
tic approaches as well by making them error-prone (Slack et al.
2020; Shrotri et al. 2022).
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for learning decision sets (Ignatiev et al. 2021) and is able
to extract reasonably short rules representing relations be-
tween various features of the target dataset. Also, as our ap-
proach is designed to enumerate 100% accurate rules, its
performance is shown to be on par with a modern imple-
mentation of the well-known Apriori association rule min-
ing algorithm (Agrawal and Srikant 1994). Second, a novel
approach to computing formal explanations taking into ac-
count background knowledge is proposed, independent of
the nature of the background knowledge; the only require-
ment imposed is that the knowledge must be represented as
a conjunction of constraints. Third, we prove theoretically
that the use of background knowledge positively affects the
quality of both abductive and contrastive explanations, thus,
helping to build trust in the underlying AI systems. Fourth,
we develop an effective way to discover which background
knowledge rules are used in extracting an explanation. This
enables a human decision maker to examine whether or not
the rules used are meaningful, which further facilitates hu-
man trust in the explanations computed. Fifth and finally,
motivated by the results of (Ignatiev 2020), we argue that
background knowledge helps one assess the correctness of
heuristic ML explainers (Ribeiro, Singh, and Guestrin 2016;
Lundberg and Lee 2017; Ribeiro, Singh, and Guestrin 2018)
more accurately since it blocks impossible combinations of
features values. Namely, we show that the estimated correct-
ness of SHAP, LIME, and Anchor may improve significantly
when background knowledge is available.

2 Preliminaries
SAT, MaxSAT, and SMT. Definitions standard in propo-
sitional satisfiability (SAT) and maximum satisfiability
(MaxSAT) solving are assumed (Biere et al. 2021). SAT
and MaxSAT formulas are assumed to be propositional. A
propositional formula ϕ is considered to be in conjunctive
normal form (CNF) if it is a conjunction (logical “and”)
of clauses, where a clause is a disjunction (logical “or”)
of literals, and a literal is either a Boolean variable b or its
negation ¬b. Whenever convenient, a clause is treated as a
set of literals. A truth assignment µ is a mapping from the
set of variables in ϕ to {0, 1}. A clause is satisfied by truth
assignment µ if one of its literals is assigned value 1 by µ;
otherwise, the clause is said to be falsified. If all clauses of
formula ϕ are satisfied by assignment µ then µ also satis-
fies ϕ; otherwise, ϕ is falsified by µ. A formula ϕ is said
to be satisfiable if there is an assignment µ that satisfies ϕ;
otherwise, ϕ is unsatisfiable.

In the context of unsatisfiable formulas, the maximum
satisfiability problem is to find a truth assignment that
maximizes the number of satisfied clauses. Hereinafter, we
will make use of a variant of MaxSAT called Partial (Un-
weighted) MaxSAT (Biere et al. 2021, Chapters 23 and 24).
The formula ϕ in Partial (Unweighted) MaxSAT is a con-
junction of hard clausesH, which must be satisfied, and soft
clauses S, which represent a preference to satisfy them, i.e.
ϕ = H∧S. The Partial Unweighted MaxSAT problem aims
at finding a truth assignment that satisfies all the hard clauses
while maximizing the total number of satisfied soft clauses.

Note that we consider a family of ML classifiers such that

Table 1: Several examples extracted from adult dataset.

Education Status Occupation Relationship Sex Hours/w Target
HighSchool Married Sales Husband Male 40 to 45 ≥ 50k

Bachelors Married Sales Wife Female ≤ 40 ≥ 50k

Masters Married Professional Wife Female ≥ 45 ≥ 50k

Masters Married Professional Wife Female ≤ 40 ≥ 50k

Dropout Separated Service Not-in-family Male ≤ 40 < 50k

Dropout Never-Married Blue-Collar Unmarried Male ≥ 45 ≥ 50k

their decision making process can be represented logically
as a propositional formula. This is needed for applying for-
mal reasoning about ML model behavior, as well as for rep-
resenting background knowledge extracted. Finally, a logi-
cal representation of boosted tree models will require us to
apply an extension of propositional logic to decidable frag-
ments of first-order logic (FOL). Namely, we will assume
the use of satisfiability modulo theories (SMT) in the theory
of linear arithmetic over reals, i.e. the concept of a clause
will be lifted to linear constraints over real variables. Opti-
mization problems for SMT can be defined analogously to
MaxSAT.

Classification Problems. Classification problems con-
sider a set of classes K = {c1, c2, . . . , ck}, and a set of fea-
tures F = {1, . . . ,m}. The value of each feature i ∈ F is
taken from a domain Di, which can be integer, real-valued
or Boolean. Therefore, the complete feature space is defined
as F ,

∏m
i=1Di. A concrete point in feature space is rep-

resented by v = (v1, . . . , vm) ∈ F, where each vi ∈ v is
a constant taken by feature i ∈ F . An instance or example
is denoted by a specific point v ∈ F in feature space and
its corresponding class c ∈ K, i.e. a pair (v, c) represents an
instance. Moreover, the notation x = (x1, . . . , xm) denotes
an arbitrary point in feature space, where each xi ∈ x is
a variable taking values from its corresponding domain Di

and representing feature i ∈ F .
A classifier defines a classification function τ : F→K.

Whenever convenient, a classification function τ and an
associated class c are represented by a decision predicate
τc : F → {0, 1}. A decision predicate τc is given a specific
class c ∈ K, such that ∀(x ∈ F).τc(x) ↔ (τ(x) = c).
There are many ways to learn classifiers for a given dataset.
In this paper, we consider: decision lists (DLs) (Rivest 1987;
Clark and Niblett 1989), boosted trees (BTs) (Friedman
2001; Chen and Guestrin 2016), and binarized neural net-
works (BNNs) (Hubara et al. 2016).
Example 1. Consider the data shown in Table 1. It rep-
resents a snapshot of instances taken from a simplified
version3 of the adult dataset (Kohavi 1996). Figure 1 il-
lustrates DL and BT models trained for this dataset. Ob-
serve that for instance v = {Education = HighSchool,
Status = Married, Occupation = Sales, Relationship =
Husband, Sex = Male, Hours/w = 40 to 45} from Table 1,

3For simplicity, the running example used throughout the text
will correspond to a simplified version of the adult dataset (Ko-
havi 1996), where some of the features are dropped. Note that the
experimental results shown below deal with the original datasets.



R0: IF Education = Dropout THEN Target < 50k
R1: ELSE IF Occupation = Service THEN Target < 50k
R2: ELSE IF Status = Married ∧ Relationship = Husband THEN Target ≥ 50k
R3: ELSE IF Status = Married ∧ Relationship = Wife THEN Target ≥ 50k
RDEF: ELSE THEN Target < 50k

(a) Decision list
T1 (≥ 50k)

Marital Status = Married?

Education = Dropout? Relationship = Not-in-family?

-0.2192 0.1063 -0.1561 -0.3850

yes no

yes no yes no

T2 (≥ 50k)

Marital Status = Married?

Occupation = Service? Hours/w > 45?

-0.2231 0.0707 -0.0080 -0.2549

yes no

yes no yes no

T3 (≥ 50k)

Relationship = Own-child?

Education = Master? Education = Dropout?

0.1186 -0.3483 -0.2844 -0.0128

yes no

yes no yes no

(b) Boosted tree (Chen and Guestrin 2016) consisting of 3 trees with the depth of each tree at most 2

Figure 1: Example DL and BT models trained on the well-known adult classification dataset.

rule R2 in the DL in Figure 1a predicts≥ 50k. Similarly, the
sum of the weights (0.1063, 0.0707 and −0.0128 in the 3
trees, respectively) for prediction ≥ 50k is positive (0.1642)
in the BT in Figure 1b, and so the BT model also predicts
≥ 50k for the aforementioned instance v.

Interpretability and Explanations. Interpretability is not
formally defined since it is a subjective concept (Lipton
2018). In this paper, we define interpretability as the con-
ciseness of the computed explanations for an ML model to
justify a provided prediction. The definition of explanation
for an ML model is built on earlier work (Shih, Choi, and
Darwiche 2018; Ignatiev, Narodytska, and Marques-Silva
2019; Darwiche and Hirth 2020; Audemard, Koriche, and
Marquis 2020; Marques-Silva and Ignatiev 2022), where ex-
planations are equated with abductive explanations (AXps),
which are the subset-minimal sets of features sufficing to
explain the prediction given by an ML model. Concretely,
given an instance v ∈ F and a computed prediction c ∈ K,
i.e. τ(v) = c, an AXp is a subset-minimal set of features
X ⊆ F , such that

∀(x ∈ F).
∧

i∈X
(xi = vi)→(τ(x) = c) (1)

Abductive explanations are also prime implicants of the
decision predicate τc and hence a prime implicant (PI) ex-
planation is another name for an AXp.

Example 2. Consider the DL and BT models in Figure 1
and data instance v from Example 1. By examining the
DL model Figure 1a, specifying Education = HighSchool,
Status = Married, Occupation = Sales, and Relationship =
Husband can guarantee that any instance is classified by
R2 independent of the values of other features, i.e. Sex and
Hours/w. In a similar vein, the prediction of an instance
is guaranteed to be ≥ 50k in Figure 1b as long as the
feature values above are used, since the sum of weights is
promised to be 0.1063 + 0.0707 + −0.0128 = 0.1642 for
class ≥ 50k. Therefore, the (only) AXp X for the predic-
tion of v is {Education, Status, Occupation, Relationship}

in both models.

We also consider contrastive explanations (CXps), which
are defined as the subset-minimal set of features that are nec-
essary to change the computed prediction if the features of a
CXp are allowed to take some arbitrary value from their cor-
responding domain. More formally and following (Ignatiev
et al. 2020), a CXp for prediction τ(v) = c is defined as a
minimal subset Y ⊆ F such that

∃(x ∈ F).
∧

i 6∈Y
(xi = vi) ∧ (τ(x) 6= c) (2)

Example 3. Consider the instance v from Example 1 clas-
sified as ≥ 50k by both models in Figure 1. Given either
model, Y = {Occupation} is a CXp for instance v be-
cause the prediction for v can be changed if feature ‘Oc-
cupation’ is allowed to take another value from its do-
main, e.g. if the value is changed to ‘Service’. Similarly
to the above, changing the value of feature ‘Occupation’
to ‘Service’ triggers that the weights in the 3 trees become
0.1063, −0.2231 and −0.0128. Therefore, the total weight
is −0.0982, i.e. the prediction is changed. By further exam-
ining the two models, other subsets of features can be iden-
tified as CXps for v. The set of CXps is Y = {{Education},
{Status}, {Occupation}, {Relationship}}, while the set of
AXps demonstrated in Example 2 is X = {{Education, Sta-
tus, Occupation, Relationship}}.

Recent work, which builds on the seminal work of Re-
iter (Reiter 1987), established a minimal hitting set (MHS)
duality relationship exists between AXps and CXps (Ig-
natiev et al. 2020). In other words, each CXp minimally hit
every AXp, and vice-versa. The explanations enumeration
algorithms used in this paper employ this fact.

Example 4. Observe how the minimal hitting set duality
holds for the set of abductive explanations X and the set
of contrastive explanations Y shown in Example 3. The only
abductive explanation minimally hits all the contrastive ex-
planations and vice versa.



3 Extracting Background Knowledge
Recent work (Gorji and Rubin 2021) argues that background
knowledge is helpful in the context of formal explanations.
The idea is that, if identified, background knowledge may
help forbid some of the combinations of feature values that
would otherwise have to be taken into account by a formal
reasoner, thus, slowing the reasoner down and making the
explanations unnecessarily long. But the question of how
such knowledge can be obtained in an automated way re-
mains open.

Example 5. Consider the data in Table 1 and assume that
it represents trustable information. The following two rules
can be extracted:

• IF Relationship = Husband THEN Status = Married
• IF Relationship = Wife THEN Status = Married

Observe that these rules may be used to exclude feature Sta-
tus from consideration when computing explanations as long
as Relationship equals either Husband or Wife because of
the implications identified.

Here we describe the MaxSAT-based approach to auto-
matically extract background knowledge, which represents
hidden relations between features of a dataset if the dataset
is assumed to be trustable. It builds on the recent two-stage
approach (Ignatiev et al. 2021) to learning smallest size
decision sets (Kamath et al. 1992; Lakkaraju, Bach, and
Leskovec 2016; Ignatiev et al. 2018; Malioutov and Meel
2018; Ghosh and Meel 2019; Yu et al. 2020, 2021). Con-
cretely, we apply the first stage of (Ignatiev et al. 2021)
which enumerates the individual decision rules given a
dataset, using MaxSAT. Each decision rule relationship be-
tween various features of a dataset, and all the rules enumer-
ated comprise the background knowledge collected.

Without diving into the full details, the idea of (Ignatiev
et al. 2021) can be summarized as follows. Given training
data E and target class c ∈ K, a MaxSAT solver is invoked
multiple times, each producing a unique subset-minimal (ir-
reducible) rule in the form of “IF antecedent THEN predic-
tion c”, where the antecedent is a set of feature values. The
MaxSAT solver is fed with various CNF constraints and an
objective function targeting rule size minimization. The ap-
proach also detects and blocks symmetric rules, i.e. those
that do not contribute new information to the rule-based rep-
resentation of class c ∈ K.

We can modify the MaxSAT approach outlined above
to learning background knowledge in the form of decision
rules, i.e. identifying the dependency of a feature i ∈ F on
other features j ∈ F \ {i}. For this, we need to discard
the prediction column from the dataset E and instead focus
on a feature i ∈ F , consider some of its values vij ∈ Di

and “pretend” to compute decision rules for a “fake class”
xi = vij . Thanks to the properties of the approach of (Ig-
natiev et al. 2021), all the rules computed are guaranteed to
be subset-minimal and to respect training data E . Once all
the rules for feature i ∈ F and value vij ∈ Di are com-
puted, the same exercise can be repeated for all the values in
Di \ {vij} but, more importantly, all the other features.

Example 6. Consider again the data of Table 1. The two
rules shown in Example 5 are computed by our rule learning
approach if we focus on feature Status. The following two
rules can be extracted when feature Relationship is focused
on instead:
• IF Status = Married ∧ Sex = Male THEN Relationship

= Husband
• IF Status = Married ∧ Sex = Female THEN Relationship

= Wife
Duplicate Rules. As mentioned above, all rules gener-

ated with the MaxSAT approach of (Ignatiev et al. 2021)
are guaranteed to be subset-minimal. Furthermore, none of
the rules enumerated is symmetric with another rule if con-
sidered in the if-then form. However, when the rules are
treated as clauses, i.e. a disjunction of Boolean literals, some
rules may duplicate the other. Indeed, recall that a rule of
size k ≤ |F| is of the form (f1 ∧ . . . ∧ fk−1) → fk
where each fi represents a literal (xi = viji ), i ∈ F and
viji ∈ Di. Clearly, this same proposition can be equiva-
lently represented as a clause (¬f1 ∨ . . . ∨ ¬fk−1 ∨ fk).
Observe that the same clause can be used to represent an-
other rule (f1∧ . . .∧fk−2∧¬fk)→ ¬fk−1, which can thus
be seen as symmetric in the clausal form. This way, a clause
of size k represents k possible rules. However, due to sym-
metry, it suffices to compute only one of them and block all
the “duplicates” by adding its clausal representation to the
MaxSAT solver. This novel symmetry breaking mechanism
significantly improves the scalability of our approach.
Example 7. Consider a rule { IF Status = Married ∧ Sex
= Male THEN Relationship = Husband } computed when
compiling feature-value Relationship = Husband. This rule
is represented as a clause

(Status 6= Married ∨ Sex 6= Male ∨ Relationship = Husband)

There are two duplicates in other contexts:
• IF Status = Married ∧ Relationship 6= Husband THEN

Sex = Female
• IF Sex = Male ∧ Relationship 6= Husband THEN Status
6= Married

Extraction limit. Even if we remove duplicate rules,
there can still be many background rules to enumerate
for an entire dataset. Many such rules will never, or only
rarely, contribute to reducing the size of explanations of
the classifier. Extracting these low value rules is unneces-
sary in the rule extracting process. In practice, we noticed
that some rules (e.g. long rules or rules having a low sup-
port) never contribute to explanation reduction. Hence, us-
ing some common sense constructive limit (e.g. on rule size,
or support, among others) on the rules when enumerating
them and focusing only on the rules that satisfy the desired
criteria helps us not only avoid an overhead of exhaustive
rule enumeration but also does not damage the quality of ex-
planations. Hence, we apply an extraction limit to prevent
exhaustive rule enumeration, which enables us to focus only
on most useful rules.

A high-level view on the overall rule extracting approach
is provided in Algorithm 1. Initially, the class column from



Algorithm 1: Rule Extracting
Input: Dataset E , extraction limit λ
Output: Rules ϕ

1: Ef ,F ← DropClass(E),ExtractFeatures(E)
2: ϕ,B ← ∅, ∅ # to extract and block rules, resp.
3: for i ∈ F do
4: for rule ∈ EnumerateRules(Ef , i, B) do
5: if limit(rule, λ) is true then
6: break
7: ϕ← ϕ ∪ rule
8: B ← ϕ
9: return ϕ

the original dataset E is dropped and the features F in E
are acquired. For each feature i ∈ F , the algorithm enumer-
ates the decision rules targeting i until the extraction limit
is met or no more rules can be found. The rules previously
learned are blocked in the clausal form, so that the algo-
rithm avoids computing duplicate rules when targeting the
remaining features. Finally, the algorithm returns the rules
extracted, which can be used as the background knowledge
when computing explanations for the ML model prediction,
as described in Section 4.

Note that our knowledge extraction approach computes
only rules that are perfectly consistent with the known data,
which makes sense if the data is extensive and trustworthy.
In practical settings, however, some of the data are unknown,
i.e. the rules computed may be inconsistent with unseen
parts of the feature space F. If testing and validation data
are available, then the rules can be tested against them. We
can then exclude the rules that are not sufficiently accurate
wrt. test and/or validation data.

4 Knowledge-Assisted Explanations
In this section, we show how to apply background knowl-
edge as additional constraints when computing a single for-
mal abductive or contrastive explanation for an ML model
prediction but also when enumerating them. We also show
how to identify the rules that have been used when extracting
formal explanations, which comes in handy when trustable
explanations are of concern.

4.1 Finding Explanations subject to Knowledge
We assume the obtained background knowledge can be rep-
resented as a formula ϕ. Under that assumption, (Gorji and
Rubin 2021) proposes to compute AXps for positive predic-
tions of a Boolean classifier τ : F → {0, 1} taking into
account constraints ϕ. Observe that formula ϕ can be seen
as representing a predicate ϕ : F → {0, 1}, the truth value
of which, i.e. ϕ(x), can be tested for an instance v ∈ F.
Concretely, the approach of (Gorji and Rubin 2021) relies of
compiling a Boolean classifier τ(x) into a tractable repre-
sentation (Shih, Choi, and Darwiche 2018) and proposes to
compute an AXp X ⊆ F for prediction τ(v) = 1, v ∈ F,
subject to background knowledge ϕ as a prime implicant of
function [ϕ(x)→ τ(x) = 1].

Algorithm 2: Enumeration of AXps (or CXps)
Input: Classifier τ , instance v, prediction c = τ(v), con-
straints ϕ, explanation type t
Output: Explanations: expls

1: expls, B ← ∅, ∅
2: while true do
3: xp← ExtractXp(τ,v, c, ϕ,B, t)
4: if xp = ∅ then
5: return expls
6: expls← expls ∪ xp
7: B ← B ∪ xp
8: return expls

Observe that we can generalize this idea to the context
of computing formal abductive and contrastive explanations
for any classifier that admits a logical representation suitable
for making reasoning oracle calls wrt. formulas (1) and (2).
In particular, given a prediction τ(x) = c, v ∈ F, c ∈ K, an
abductive explanation X ⊆ F subject to background knowl-
edge ϕ is such that the following holds:

∀(x ∈ F).
∧

j∈X
(xj = vj)→ [ϕ(x)→(τ(x) = c)] (3)

More importantly, we observe that the same can be done
with respect to contrastive explanations. In particular, given
a prediction τ(x) = c, v ∈ F, c ∈ K, a contrastive explana-
tion Y ⊆ F subject to background knowledge ϕ is such that
the following holds:

∃(x ∈ F).
∧

i 6∈Y
(xi = vi) ∧ [ϕ(x) ∧ (τ(x) 6= c)] (4)

Note that (3) and (4) are the negation of each other, i.e. a
subset of features Y ⊆ F is a CXp for prediction τ(x) = c
iff X = F \ Y is not an AXp. This means when deal-
ing with either AXps or CXps, one can apply a reason-
ing oracle to test (un)satisfiability of formula

∧
i∈Z(xi =

vi) ∧ [ϕ(x) ∧ (τ(x) 6= c)] with Z being either X or F \ Y
depending on the kind of target explanation. This means that
if background knowledge ϕ is given as a conjunction of con-
straints, e.g. rules, we can integrate them in the existing for-
mal explanation extraction approach of (Ignatiev, Narodyt-
ska, and Marques-Silva 2019) with no additional overhead.

Following (Ignatiev et al. 2020) and applying the same
arguments, an immediate observation to make is that in the
presence of background knowledge, the minimal hitting set
duality between AXps and CXps holds:
Proposition 1. Let v ∈ F be an instance such that τ(v) =
c, c ∈ K, and background knowledge ϕ is compatible with
v. Then any AXp X for prediction τ(v) = c minimally hits
any CXp for this prediction, and vice versa.

Proposition 1 enables us to apply state-of-the-art algo-
rithms originally studied in the context of over-constrained
systems (Bendı́k, Cerná, and Benes 2018; Grégoire, Izza,
and Lagniez 2018; Liffiton et al. 2016) either to compute a
single AXp/CXp or to explore all AXps and CXps for ML
predictions. Without going into details, a high-level view
on the approach to enumerating AXps and/or CXps with



background knowledge is outlined in Algorithm 2. The al-
gorithm represents a loop that finds a single AXp or CXp
until no more explanations can be computed. Here, a call to
ExtractXp is meant to represent a call to one of the ex-
isting explanation extraction algorithms (Ignatiev, Narodyt-
ska, and Marques-Silva 2019; Ignatiev et al. 2020), which
employ the ideas behind dealing with over-constrained sys-
tems (Bailey and Stuckey 2005; Liffiton and Sakallah 2008;
Belov, Lynce, and Marques-Silva 2012; Marques-Silva et al.
2013; Mencia, Previti, and Marques-Silva 2015; Ignatiev
et al. 2015; Liffiton et al. 2016). As mentioned above, the
background knowledge is used as additional constraints dur-
ing the explanation process. Each computed explanation is
blocked in formula B such that no duplicate explanations
can be found later. Finally, Algorithm 2 returns the com-
puted AXps and/or CXps.

Gorji et al. (Gorji and Rubin 2021) noticed and proved
that subset-minimal AXps computed subject to additional
constraints for Boolean classifiers tend to be smaller than
their unconstrained “counterparts”. The rationale is that
when additional constraints are imposed, some of the fea-
tures i ∈ F may be dropped from an AXp because the equal-
ities xi = vi falsify the constraints, i.e. they represent data
instances that are not permitted by the constraints. Based on
their result, the following generalization can be proved to
hold:
Proposition 2. Let v ∈ F be an instance such that τ(v) =
c, c ∈ K, and background knowledge ϕ is compatible with
v. Then for any subset-minimal AXp X ⊆ F for predic-
tion τ(v) = c, there is a subset-minimal AXp X ′ ⊆ F
for τ(v) = c subject to background knowledge ϕ such that
X ′ ⊆ X .

Proof. First, observe that if (1) holds for a set S then (3)
holds for S too. Let X be a subset-minimal AXp for τ(v) =
c with no knowledge of ϕ, i.e. (1) holds for X . Thanks to the
observation above, (3) also holds for X . To make it subset-
minimal subject to ϕ, we can apply linear search feature
traversal (similar to the AXp extraction algorithm (Ignatiev,
Narodytska, and Marques-Silva 2019)) checking if any of
the features of X can be dropped s.t. (3) still holds. The re-
sult subset-minimal set of features X ′ is the target AXp sub-
ject to knowledge ϕ. ut
Remark 1. Note that the opposite, i.e. that given AXp
X ′ subject to background knowledge ϕ, there must exist a
subset-minimal AXp X ⊇ X ′ without background knowl-
edge ϕ, in general does not hold. To illustrate a counterex-
ample, consider a fully Boolean classifier τ : {0, 1}3 →
{0, 1} on features F = {a, b, c}, which returns 1 iff (a +
b + c) ≥ 2. Consider instance v = (1, 1, 0) classified
as 1. Given knowledge ϕ = (¬c → a) ∧ (¬c → b), a
valid subset-minimal AXp is X ′ = {c}. However, when dis-
carding knowledge ϕ, the only subset-minimal AXp for v is
X = {a, b} 6⊇ X ′.
Example 8. Consider the DL in Figure 2 trained on the ex-
amples in Table 1. Given an instance v = {Education =
Dropout, Status = Separated, Occupation = Service, Rela-
tionship = Not-in-Family, Sex = Male, Hours/w = ≤ 40},

R0: IF Status = Married THEN Target≥ 50k
R1: ELSE IF Sex = Male ∧ Relationship 6= Husband THEN Target < 50k
RDEF : ELSE THEN Target≥ 50k

Figure 2: A DL for selected examples of adult dataset.

observe that the prediction enforced by R1 is ≤ 50k and the
AXp is X = {Status, Relationship, Sex}. Assume the set of
constraints ϕ consists of a single constraint {Sex = Male ∧
Relationship = Not-in-Family → Status = Separated}.
Feature ‘Status’ can be dropped because the constraint en-
sures it to be set to the “right value” if the other two features
are set as required, and hence R0 is guaranteed not to fire.
Thus, Algorithm 2 can compute a smaller AXp X ′ = { Re-
lationship, Sex }.

While using background knowledge ϕ pays off in terms of
interpretability of abductive explanations, this cannot be said
wrt. contrastive explanations. Surprisingly and as the fol-
lowing result proves, background knowledge can only con-
tribute to increase the size of contrastive explanations.

Proposition 3. Let v ∈ F be an instance such that τ(v) =
c, c ∈ K, and background knowledge ϕ is compatible with
v. Then for any subset-minimal CXp Y ′ ⊆ F for predic-
tion τ(v) = c subject to background knowledge ϕ, there
is subset-minimal CXp Y ⊆ F is a CXp for prediction
τ(v) = c such that Y ′ ⊇ Y .

Proof. First, observe that if (4) holds for a set S then (2)
holds for S too. Let Y ′ be a subset-minimal CXp subject to
background knowledge ϕ, i.e. (4) holds for Y ′. By the obser-
vation made above, (2) also holds for Y ′. Now, by applying
linear search dropping features of Y ′ and checking (2) (Ig-
natiev, Narodytska, and Marques-Silva 2019), one can get a
subset-minimal Y ⊆ Y ′ wrt. (2), i.e. Y is a subset-minimal
CXp. ut

Remark 2. Note that the reverse direction: given a CXp Y
generated without using background knowledge, there must
exists a CXp Y ′ ⊇ Y using background knowledge, does
not hold. Consider a classifier on Boolean features F =
{a, b, c} which returns the parity ODD, EVEN of a+ b+ c.
Consider background knowledge a = b. Now Y = {a}
is a CXp for τ(1, 1, 1) = ODD without using background
knowledge supported by instance τ(0, 1, 1) = EVEN. But
this does not agree with the background knowledge. The only
CXp using the background knowledge is {c}, because a and
b must change together they never affect the parity. However
and as our experimental results confirm, in practice these
examples do not arise, as we always find a CXp using back-
ground knowledge that extends a CXp without background
knowledge.

One may wonder then why background knowledge is use-
ful when we are computing CXps. The reason is that the
CXps generated using background knowledge are correct
under the assumption that the background knowledge de-
scribes the actual relationships between features. On the



Algorithm 3: Determine Background Knowledge Used
Input: Classifier τ , instance v, prediction c = τ(v), con-
straints ϕ, AXp X ′
Output Used rules: ϕu ⊆ ϕ

1: ϕu ← ϕ
2: if Entails(X ′, τ,v, c, ∅) then
3: return ∅
4: for r ∈ ϕ do
5: if Entails(X ′, τ,v, c, ϕu \ {r}) then
6: ϕu ← ϕu \ {r}
7: return ϕu

contrary, CXps generated without using background knowl-
edge are only correct under the assumption that every possi-
ble combination of feature values is possible, i.e. all features
are independent and their values are uniformly distributed
across the feature space, which hardly ever occurs in prac-
tice.
Example 9. Consider the DL model of Algorithm 2, the in-
stance and the prediction in Algorithm 8. Observe that a
CXp for the prediction is Y = { Status }. Its correctness re-
lies on the fact that changing Status to Married changes the
prediction to ≥ 50k. But given the background knowledge
ϕ, this is clearly erroneous. Since the other fixed features in
instance v are { Sex = Male, Education = Dropout, Occu-
pation = Service, Relationship = Not-in-family, Hours/w =
≤ 40 }, the modification is inconsistent with the background
knowledge ϕ. This demonstrates the weakness of CXps as
they rely on the assumption that any tuple of feature values
in F is possible. Applying the same constraint ϕ in Exam-
ple 8 leads to a larger CXp Y ′ , { Status, Relationship }.
This clearly does allow the prediction to change and it is
compatible with the background knowledge ϕ.

4.2 Attributing Responsibilities to Knowledge
Since the computed background knowledge is not always
useful, e.g. the extracted rules may not necessarily con-
tribute to smaller AXps, we introduce an approach to discov-
ering which of the rules are used to reduce an explanation.
Using this approach, we can observe and measure the effect
of the value of extraction limit discussed in Section 3, e.g.
the size limit of 5 can be considered as a reasonable extrac-
tion limit if the size of most of the useful rules is no more
than 5. A further usage is that when providing a user with an
explanation, we can expose which background knowledge
was used to generate the explanation. This enables the user
to assess the quality of the rules used and decide whether
they trust or disagree with the background knowledge.

Given a knowledge-assisted AXp X ′ for prediction
τ(v) = c and background knowledge ϕ, Algorithm 3 re-
ports a subset of rules ϕ responsible for the explanation X ′.
The algorithm makes use of a number of calls to Entails,
which is meant to be a call to reasoning oracle deciding
the validity of formula (3) subject to background knowledge
specified as the final parameter. First, we check if X ′ satis-
fies the AXp condition (1) with no knowledge given. If this
is the case, then no rules are used when computingX ′ and so

the algorithm returns ∅. Otherwise, the algorithm proceeds
by considering each rule r ∈ ϕ one by one and checking if
condition (3) holds for background knowledge ϕ \ {r} (see
line 5). If it does then rule r can be dropped; otherwise, it
is necessary for AXp X ′ and is thus kept. This simple linear
search procedure ends up identifying a subset-minimal set of
rules ϕu that are responsible for abductive explanation X ′.

Note that a similar algorithm can be outlined for identi-
fying background knowledge useful when computing con-
trastive explanations. In that case, instead of making calls to
Entails, one would need to make calls to a reasoner de-
ciding the validity of formula (4) subject to a varying set of
background constraints ϕu.

5 Experimental Results
This section details the experimental results assessing the
proposed approach to extracting background knowledge
compared to a modern implementation of the Apriori algo-
rithm (Agrawal and Srikant 1994) as well as the quality of
the enumerated AXps and CXps with background knowl-
edge applied for 3 different ML models: DLs, BTs, and
BNNs. Finally, this section applies the background knowl-
edge identified for evaluating correctness of the explanations
produced by heuristic ML explainers LIME, SHAP, and An-
chor.

Setup and Prototype Implementation. The experiments
were run on a server running Ubuntu 20.04.2 LTS and In-
tel Xeon 8260 CPU. For each experiment, the memory was
limited by 8 GByte. A prototype of the proposed approach to
extracting background knowledge and computing AXps and
CXps applying background knowledge was developed as a
set of Python scripts.4 The implementation of knowledge
extraction builds on (Ignatiev et al. 2021) and extensively
uses state-of-the-art SAT technology (Ignatiev, Morgado,
and Marques-Silva 2018, 2019). Also, the implementation
of explanation enumeration for DLs and BNNs makes use of
the SAT technology (Ignatiev, Morgado, and Marques-Silva
2018) while for BTs we apply modern SMT solvers (Gario
and Micheli 2015).

A few words should be said about the competition we
considered. First of all, we compared our knowledge ex-
traction approach to a modern implementation5 of the Apri-
ori algorithm (Agrawal and Srikant 1994). Apriori is one
of the classical and widely studied association rule mining
techniques. The algorithm iteratively explores itemsets of
length k + 1 that meet the minimum support using previ-
ously extracted k-length itemsets. When running Apriori,
we apply the same setup as used for our approach. Finally,
when running LIME (Ribeiro, Singh, and Guestrin 2016),
SHAP (Lundberg and Lee 2017), and Anchor (Ribeiro,
Singh, and Guestrin 2018) in order to assess the quality of
their explanations, we use their default configurations.

Datasets. The benchmarks considered include a selection
of datasets publicly available from UCI Machine Learning

4The implementation as well as all datasets and logs of our ex-
periments is available at https://github.com/jinqiang-yu/xcon22.

5https://github.com/ymoch/apyori

https://github.com/jinqiang-yu/xcon22
https://github.com/ymoch/apyori
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Figure 3: Accuracy of rules extracted by xcon.

Repository (Dua and Graff 2017) and Penn Machine Learn-
ing Benchmarks (Olson et al. 2017). In total, 24 datasets
are selected. Whenever applicable, numeric features in all
benchmarks were quantized into 4, 5, or 6 intervals. There-
fore, the total number of quantized datasets considered is 62.

Machine Learning Models. We used CN2 (Clark and
Niblett 1989) to train the DL models studied. The BTs were
computed by XGboost (Ribeiro, Singh, and Guestrin 2016),
where the number of trees per class in the BT model is 25
and the depth of each trees is limited by 3. The BNNs were
trained by PyTorch (Paszke et al. 2019). Three different sets
of hidden layer size6 were used in the computation of BNNs
to achieve sufficient test accuracy. As usual, each of the 62
datasets was randomly split into 2 chunks of 80% and 20%
of data instances for training and testing purposes, respec-
tively. The average test accuracy of the DL, BT, and BNN
models was 76.47%, 76.17%, and 80.31%, respectively.

5.1 Rule Extraction
Although the proposed knowledge extraction approach com-
putes rules that are fully consistent with the known (training)
data, to evaluate how it performs in a real life scenario, we
applied 5-fold cross validation, i.e. each dataset was split
into 5 chunks of training and test (unseen) data and the av-
erage result across all 5 train-test chunks was calculated.
Given a rule, its accuracy is calculated as I−E

I , where I is
the total number of test instances while E is the number of
test instances in that disagree with the rule. An instance v
disagrees with a rule r if v falsifies r. The accuracy for the
entire dataset is defined as the average rule accuracy across
the 5 folds. Here, we examined the average accuracy of rules
of size s ∈ 1..5, where s is the number of literals in the left-
hand size of the rule, but also the accuracy of all rules of
size up to 5. (The corresponding approaches are denoted as
ruless, s ∈ 1..5, or rulesall, respectively.) So in this exper-
iment the extraction limit value when enumerating rules was
5. We discuss the effect of this limit in Section 5.3.

6The 3 sets of hidden layer sizes are classified as small, medium
and large configurations. The size of the hidden layers of these 3
configurations is as follows: large: (64, 32, 24, 2); medium: (32,
16, 8, 2); small: (10, 5, 5, 2).
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Figure 4: Apriori vs. xcon – performance comparison.

Figure 3 compares the average accuracy of the back-
ground knowledge extracted, including the rules of all the
aforementioned sizes. As can be observed, average rule ac-
curacy gets no lower than 94%. Furthermore, the average
accuracy of all rules in all datasets is over 98%. Finally, for
the majority of datasets, the accuracy of ruless, s ∈ 1..5,
also exceeds 98%.

Besides the experiment detailed above, we also compared
the overall performance of exhaustive rule extraction against
rule extraction with the size limit 5. On average, exhaustive
(limited, resp.) rule enumeration ends up computing 2116.29
(1964.24, resp.) rules per dataset. According to our results,
our approach is quite efficient and for the lion’s share of
datasets (59 out of 62) both exhaustive and limited enumer-
ation finish within 30 seconds; for the 3 remaining datasets,
limited enumeration is a bit faster but both approaches fin-
ished rule enumeration within 3000 seconds.

In the remainder of this section, we compare xcon against
Apriori in terms of the overall performance. Figure 4 com-
pares the runtime of rule extraction and the number of ex-
tracted rules in a dataset between Apriori and the MaxSAT
approach, where only rules of size up to 5 are extracted by
the two approaches. Note that for the sake of a fair compari-
son, we set Apriori to extract only rules of confidence 100%,
i.e. all the rules extracted are perfectly consistent with the
known data. The average results across all 5 train-test pairs
are reported.

Scalability. Figure 4a demonstrates that xcon can extract
rules faster than Apriori in the vast majority of the consid-
ered datasets. Moreover, Apriori can only extract rules for
the train-test 5-fold pairs of 57 (out of 62) datasets, while
xcon is able to extract rules for all the considered datasets.

Rule Amount. Figure 4b depicts the comparison of the
number of extracted rules in the 57 datasets solved by both
approaches. At first glance, it can be observed that Apriori
extracts more rules than xcon. However, this happens be-
cause Apriori uses a more limited language for the feature
literals, i.e. it cannot extract rules containing the negation of
a feature-value pair. For example, assume xcon can extract a
rule [IF x1 6= 0 THEN x2 = 1] given features 1 and 2 and
their domains D1 = D2 = {0, 1, 2}. In this case, Apriori is
unable to extract the above rule – instead, it has to extract



Table 2: Change of average minimum explanation size.

Dataset Feats Model AXp Size CXp Size

Before After Before After

DL 7.46 3.65 1.00 1.60
adult 65 BT 5.02 2.84 1.10 2.13

BNN 7.51 3.00 1.40 2.15

DL 5.65 3.74 1.01 1.15
compas 16 BT 3.91 3.09 1.06 1.15

BNN 4.40 2.79 1.19 1.30

DL 5.30 4.30 1.00 1.41
lending 35 BT 1.99 1.80 1.00 2.04

BNN 4.36 2.49 1.35 1.90

DL 9.51 5.58 1.00 1.23
recidivism 29 BT 6.04 4.04 1.17 1.67

BNN 7.01 4.01 1.42 1.82

two distinct rules to represent the same information, i.e. [IF
x1 = 1 THEN x2 = 1] but also [IF x1 = 2 THEN x2 = 1].

5.2 Knowledge-Assisted Explanations
This section evaluates the proposed approach to computing
formal explanations for DLs, BTs, and BNNs, where the
computed background knowledge was applied. In particular,
we evaluate the runtime of explanation enumeration, expla-
nation size, as well as the portion of background knowledge
used when computing explanations. Note that here we con-
sider only the rules of size at most 5, which is shown to be a
reasonable value in Section 5.3.

For each of the 62 datasets, we selected all test instances
and enumerated 20 smallest size AXps or CXps for each
such instance. Hereinafter, xcon∗ s.t. ∗ ∈ {dl, bt, bnn} de-
notes the proposed approach applied for explaining DL, BT,
and BNN models, respectively. Furthermore, a superscripted
version xconr∗ is used to denote the configurations that apply
background knowledge.

Scalability. The scatter plots in Figures 5a, 5b, 6a, 6b, 7a
and 7b depict the comparison of the average runtime of com-
puting a single AXp or CXp for an instance (taken across all
the 20 explanations computed) between xcon∗ and xconr∗.
Clearly, for all the 3 models, the use of background knowl-
edge significantly improves the performance of AXp extrac-
tion (see Figures 5a, 6a, and 7a). At first glance, the per-
formance of CXp extraction deteriorates significantly in the
case of DLs (Figure 5b) if compared to the other two models.
We should say that this impression is caused by a different
scaling used in Figure 5b — observe that CXp extraction is
1–3 orders of magnitude faster for DLs than for the other 2
models, both when applying and not applying background
knowledge. Also, this can be explained by the fact that the
average CXp size in the case of DLs increases tremendously,
which leads to a much larger number of reasoning oracle
calls when computing an explanation. For BTs and BNNs,
the use of background knowledge neither improves nor de-
grades the computation of CXps (Figures 6b and 7b), even
though an increase of CXp size can be also observed.

Explanation Quality. The change of smallest size of
AXps and CXps in an instance is shown in Figure 5c, 5d, 6c,

6d, 7c, and 7d. As can be seen in Figure 5c,6c and 7c, our
results demonstrate how background knowledge, if present,
contributes to AXp size reduction across all models. In par-
ticular, in many cases the size of a smallest AXp drops from
14 to 2, from 11 to 2, and from 17 to 2, for DLs, BTs, and
BNNs, respectively. In contrast to AXps, Figures 5d, 6d and
7d illustrate that the size of smallest CXps is increased when
background knowledge is applied. Namely, in a number of
cases the size of a smallest CXp jumps from 1 to 14, from
1 to 15, and from 2 to 13 for DLs, BTs, and BNNs, re-
spectively. These results exemplify how easy it is to flip the
prediction when no background knowledge is present illus-
trating the potential correctness issues for the corresponding
CXps.

Table 2 details the change of the average size of small-
est AXps and CXps computed without or with background
knowledge for DLs, BTs and BNNs and for a selection of
4 publicly available datasets: adult, compas, lending and re-
cidivism, which were previously studied in the context of
heuristic and formal explanaitions. (Here, all numeric fea-
tures, if any, are quantized into 6 intervals.) Note that Table 2
confirms the general observations made that background
knowledge triggers smaller AXps but larger CXps for all the
models studied. The average size of smallest AXps in adult
and recidivism drops by around 4 for DLs and BNNs, while
the average smallest CXp size slightly increases for the two
models. In compas, the size of smallest AXps in the three
models decreases by 1–2 and the size of smallest CXps sub-
tly increases. The size of smallest AXps in lending drops by
1.00 in DLs, 0.19 in BTs, and 1.87 in BNNs.

On Apriori-assisted explanations. The experiment
above was repeated for the background knowledge extracted
with the use Apriori and its results are detailed below.
Namely, Figure 8, Figure 9 and Figure 10 evaluate the pro-
posed approach to computing formal explanations for DLs,
BTs, and BNNs, taking into account the rules mined by
Apriori. Note that here only 57 datasets tackled by Apri-
ori are considered. Similar to xcon∗ above, apriori∗ ∈
{dl, bt, bnn} represents the formal explanation approach ap-
plied to DL, BT, and BNN models, respectively. More-
over, apriorir∗ is used to denote the configurations that apply
background knowledge extracted by Apriori. Scalability-
wise and in contrast to the case of xcon, where the perfor-
mance of AXps computation improves and the performance
of CXp computation degrades in the presence of background
knowledge extracted by the MaxSAT approach, the use of
Apriori-provided background knowledge degrades the per-
formance of CXp generation for DLs as well as both AXp
and CXp computation for BTs. This can be explained by
the larger number of rules extracted by Apriori compared to
the MaxSAT approach. In terms of the quality of explana-
tions, observations similar to the case of xcon can be made,
i.e. background knowledge extracted by Apriori can trigger
AXp size reduction across all the 3 models, while the size of
CXps increases due to the background knowledge.

5.3 Usefulness of Background Knowledge
To assess rules’ contribution into explanation extraction,
we applied the setup of Section 5.2, i.e. we enumerated at
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Figure 5: Impact of xcon rules on runtime (ms) and explanation size for DLs.
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Figure 6: Impact of xcon rules on runtime (ms) and explanation size for BTs.
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Figure 7: Impact of xcon rules on runtime (ms) and explanation size for BNNs.

most 20 smallest size AXps for each test instance.7 Table 3
presents the evaluation of which rules contribute to AXp size
reduction for DLs, BTs, and BNNs for the same selection of
datasets studied in Table 2, i.e. adult, compas, lending and
recidivism. However and in contrast to the previous exper-
iment, the rules here are exhaustively extracted for each of
the datasets, i.e. no extraction limit is applied. This resulted
in extracting rules up to size 7.

Our experimental results indicate that rules of size greater
than 5 are not frequently used when computing AXps. Ta-
ble 3 shows that the size of more than 98% of the useful rules

7This experiment is conducted only for the proposed MaxSAT-
based approach for knowledge extraction.

in the three models for compas ranges from 1 to 4. For adult,
more than 95% of the useful rules comprise 1 to 5 literals.
The rules of size 5 are significant in the case of lending and
recidivism, where more than 20% of the useful rules contain
5 literals. However, there are 29.0%, 29.1%, and 26.1% of
the useful rules larger than size 5 for recidivism in DLs, BT,
and BNNs, respectively, while less than 11% of the useful
rules contain more than 5 literals for the other 3 datasets.
These results support our choice of value 5 as the extraction
limit since the size of the vast majority of useful rules is no
more than 5.
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Figure 8: Impact of Apriori rules on runtime (ms) and explanation size for DLs.
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Figure 9: Impact of Apriori rules on runtime (ms) and explanation size for BTs.

10−1 101 103

apriorirbnn

10−1

100

101

102

103

104

ap
ri

or
i b

nn

(a) AXp runtime for BNNs

10−1 101 103

apriorirbnn

10−1

100

101

102

103

ap
ri

or
i b

nn

(b) CXp runtime for BNNs

0 2 4 6 8 10 12 14 16
apriorirbnn

0

2

4

6

8

10

12

14

16

ap
ri

or
i b

nn

(c) AXp size for BNNs

0 2 4 6 8 10 12 14 16
apriorirbnn

0

2

4

6

8

10

12

14

16

ap
ri

or
i b

nn

(d) CXp size for BNNs

Figure 10: Impact of Apriori rules on runtime (ms) and explanation size for BNNs.

5.4 On Formal vs. Heuristic Explanations Subject
to Background Knowledge

Following (Ignatiev 2020), this section assesses the ef-
ficiency and explanation quality for the 3 heuristic ap-
proaches, namely LIME, SHAP, and Anchor, in the pres-
ence of background knowledge. In particular, we assess the
runtime of heuristic explanation computation, correctness of
generated explanations, and the size of correct explanations.

Scalability. Figure 11 compares the runtime of a single
explanation generation for a data instance among LIME,
SHAP, Anchor, xcon, and xconr. Hereinafter, lime∗, shap∗,
and anchor∗, s.t. ∗ ∈ {dl, bt, bnn}, indicate LIME, SHAP,

and Anchor, respectively, applied to computing explanations
for DLs, BTs, and BNNs, while xconr∗,xp and xcon∗,xp repre-
sent the proposed approach to computing AXps or CXps for
the three models with/without background knowledge, s.t.
∗ ∈ {dl, bt, bnn} and xp ∈ {axp, cxp}. Here, the setup de-
scribed in Section 5.2 is used for xcon as well as xconr, and
the runtime of computing a single formal explanation (ei-
ther AXp or a CXp) is considered. Figure 11 demonstrates
that both xcon and xconr outperform LIME and Anchor for
all the 3 models, where all explanations are computed in
less than 1 second. LIME and Anchor achieve similar per-
formance for DL and BNN models, while LIME outweighs



Table 3: Size distribution of used rules.

Dataset Feats Model Distribution (%)
1 2 3 4 5 6 7

DL 10.9 17.2 37.7 21.9 8.4 3.1 0.8
adult 65 BT 7.3 10.0 39.5 30.2 10.1 2.4 0.4

BNN 9.8 11.5 39.6 26.8 9.0 2.7 0.5

DL 55.4 17.4 22.3 3.3 0.2 1.4 −
compas 16 BT 53.2 29.0 16.1 1.0 0.1 0.6 −

BNN 41.4 27.3 27.2 2.9 0.9 0.3 −
DL 43.4 4.1 3.3 18.7 20.2 9.3 1.1

lending 35 BT 41.7 7.6 4.5 13.3 23.2 9.1 0.7
BNN 36.2 3.6 3.5 21.3 24.6 9.5 1.2

DL 2.9 1.5 9.1 25.8 28.6 20.3 8.7
recidivism 29 BT 2.1 1.5 8.1 25.8 30.9 20.7 8.4

BNN 1.6 1.4 7.5 24.1 36.6 18.7 7.4

Anchor when generating explanations for BTs. However, the
worst performance for DL and BNN models is demonstrated
by SHAP while, surprisingly, SHAP outperforms the other
competitors for BTs models.

Correctness. The correctness of computed explanations
when background knowledge is unavailable is shown in Fig-
ure 12a, while the correctness of explanations subject to
background knowledge is depicted in Figure 12b. Here, an
explanation is said to be correct if it answers a “why” ques-
tion and satisfies (1) (or (3) in the presence of background
knowledge) or it answers a “why not” question and satis-
fies (2) (or (4) in the presence of background knowledge).
The superscripted notation limer∗, shapr∗, and anchorr∗ is
used to denote the fact that background knowledge is applied
when evaluating correctness of the explanations produced
by LIME, SHAP, and Anchor, respectively. Figure 12 shows
that the correctness is higher when background knowledge
is applied as the number of features required in a minimal
correct explanation answering a “why” question can drop,
which is demonstrated in Section 5.2. However, these ap-
proaches are not able to achieve 100% correctness in the
majority of the datasets. The best results are demonstrated
by SHAP in both Figure 12a and Figure 12b. SHAP’s ex-
planations for most of the datasets achieve 40% correctness
when no background knowledge applied, while its correct-
ness jumps to 80% for the vast majority of datasets when
background knowledge is taken into account. As of LIME
and Anchor, without background knowledge, the correctness
of most of the explanations is less than 20% for anchorbt,
limebnn, anchorrbnn, and limedl, but the correctness dramati-
cally increases when background knowledge is applied. Fig-
ure 12b demonstrates that with background knowledge the
best correctness is achieved by SHAP, followed by Anchor,
where the major correctness for SHAP, Anchor, and LIME
is more than 80%, 60% and 40%, respectively.

Overall, observe that all the heuristic explainers consid-
ered demonstrate low correctness when background knowl-
edge is not present, which is in line with the earlier results
of (Ignatiev 2020). However, the situation changes dramat-
ically when we apply the background knowledge. This is
because some of the counterexamples invalidating heuristic
explanations are forbidden by the knowledge extracted. As-
suming that this knowledge is valid, these correctness results

better reflect the reality and so are more trustable.

Explanation quality. Although explanation correctness
dramatically increases when background knowledge is used,
large size of correct explanations can render then uninter-
pretable. In this experiment, we evaluate the size of cor-
rect explanations computed by LIME, SHAP, and Anchor,
and check how far those correct explanations are from their
subset-minimal counterparts. Concretely, given a correct
heuristic explanation computed either by LIME, or SHAP, or
Anchor, we apply the formal approach to reduce it further,
with or without background knowledge. Then we contrast
the size of correct explanations and their corresponding size-
minimal correct explanations for DL, BT, and BNN models.
The comparison is detailed in the scatter plots of Figure 13,
14, and 15. As can be observed, a vast majority of correct ex-
planations computed by LIME, SHAP, and Anchor are not
minimal. Their size significantly exceeds the size of subset-
minimally reduced explanations. Furthermore, the size dif-
ference increases when background knowledge is available,
which is in line with our earlier observations regarding the
AXp computation.

6 Related Work
There are many methods for extracting knowledge from a
dataset of rules (Hipp, Güntzer, and Nakhaeizadeh 2000;
Zhang and Zhang 2002; Agrawal and Srikant 1994). For use
as background knowledge we want to have very high confi-
dence in the rules, ideally they should be completely valid
for the feature space. While this is impossible to guarantee,
the approach we define only generates rules, which are valid
for the entire data used for rule generation. We can then use
a validation or test set to remove rules that are not supported
by the larger data. Traditional rule mining approaches are
more interested in rules with high support and less focussed
on validity, although they can be adapted to this case (see
our experimental results above). Although the explanation
methods we apply in the presence of background knowledge
are completely agnostic about where it comes from, the mo-
tivation for our rule extraction method is twofold: (1) the
rules are computed in clausal form and (2) their high quality
is guaranteed by the use of the strict optimisation problem
formulation.

The most prominent approaches to post-hoc explainabil-
ity are of heuristic nature (Ribeiro, Singh, and Guestrin
2016; Lundberg and Lee 2017; Ribeiro, Singh, and Guestrin
2018) and based on sampling in the vicinity of the in-
stances being explained. None of these approaches can han-
dle background knowledge. Furthermore, they are suscep-
tible to out-of-distribution attacks (Slack et al. 2020). Ap-
proaches to formal explainability are represented by com-
pilation of classifiers into tractable representations (Shih,
Choi, and Darwiche 2018) and reasoning-based explana-
tion approaches (Ignatiev, Narodytska, and Marques-Silva
2019).

The closest related work in this area is (Gorji and Rubin
2021). Based on compilation of a binary classifier into a bi-
nary decision diagram (BDD), it conjoins concocted back-
ground knowledge to give more succinct “why” explana-
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Figure 11: Runtime (ms) of the considered explainers per explanation for DLs, BTs and BNNs.
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Figure 12: Correctness of heuristic explanations.

tions for the classifier. This approach is restricted to much
smaller examples than we consider here, since the compi-
lation of a classifier into a BDD explodes with the feature
space. The SAT and SMT based approaches to explanation
we use are far more scalable. Finally, we consider a much
broader class of classifiers, and also examine “why not” ex-
planations and how they can be improved by using back-
ground knowledge.

7 Conclusions
Using background knowledge is highly advantageous for
producing formal explanations of machine learning mod-
els. For abductive explanations (AXps), the use of back-
ground knowledge substantially shortens explanations, mak-
ing them easier to understand and improves the speed of pro-
ducing explanations. For contrastive explanations (CXps),
while the background knowledge lengthens them, and may
increase the time required to generate an explanation, the re-
sulting explanations are far more useful since they do not
rely on the (usually unsupportable) assumption that all tu-
ples in the feature space are possible. Furthermore and as

this paper shows, background knowledge can be applied in
the context of heuristic explanations when an accurate anal-
ysis of their correctness is required.
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